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ARTICLE INFO ABSTRACT
Keywords: Pig body temperature is a critical indicator for health assessment of pigs, and can be detected automatically with
Infrared thermography machine vision-based models, due to their accuracy and effectiveness. However, it is hard to apply them onsite in

Temperature detection

X large-scale pig farms. A primary issue lies in the absence of lightweight feature extraction models that can
Feature extraction

effectively address the problem of multimodal information fusion. To fill this gap, this study proposes FP-DETR
(Frequency Parallel backbone DEtection TRansformer) by integrating parallel backbone and frequency-spatial
domain multimodal fusion technology method into the DETR (DEtection TRansformer) object detection model
to compress the model structure and enhance the model’s feature extraction capability. The proposed FP-DETR
model achieves precision of 98.9% and recall of 96.88% with only 5.9 x 10° parameters and 8.8 h training time.
Compared with the YOLOv12 model, FP-DETR improves detection speed by 35 FPS and accuracy by 6.3%. FP-
DETR’s temperature extraction achieved performance with R? of 0.957 and mean absolute error (MAE) of 0.108.
In addition, equipment development and model integration have been completed, and an on-site experiment has
been conducted, showing that the system is about 42.9% faster than manual. Therefore, the proposed model
offers excellent performances of efficiency and accuracy as a promising solution for real-time onsite pig body
surface temperature detection.

Image alignment
Semantic segmentation

health in commercial farming (Ramirez and Karriker, 2019). Tradi-
tionally, rectal temperature is measured by inserting a mercury or

1. Introduction electronic thermometer into the rectum (Cuthbertson, et al., 2019,

Sellier, et al., 2014), which is both labor-intensive, time-consuming, and

With the continuous expansion of large-scale pig farming, increasing often causes stress in pigs, making it unsuitable for large-scale farms.

attention has been directed toward pig health (Tzanidakis, et al., 2021). With the advancement of digital sensing technologies, implantable
Body temperature is one of the most important indicators reflecting the biosensors have been explored for temperature measurement. In dairy
health status of pigs (Lu, et al., 2018). Many infectious diseases, such as cows, sensor readings showed a strong correlation with vaginal tem-
respiratory infections (Opriessnig, et al., 2011), African swine fever perature (r = 0.85) under heat stress conditions (Chung, et al., 2020). In
(Salguero, 2020), and porcine reproductive and respiratory syndrome pigs, subcutaneous temperature was about 1°C lower than rectal values
(Benjamin and Yik, 2019), etc., can cause abnormal fluctuations in body but still demonstrated a significant linear relationship (r = 0.88, P <
temperature. Therefore, the real-time and accurate measurement of pig 0.0001) (Lohse, et al., 2010). These findings confirm that implantable
body temperature is of great significance for the early diagnosis of dis- devices can effectively measure body temperature in animals. However,
eases and the assessment of overall health (Zhang, et al., 2019). their high cost and the stress caused by implantation limit their

Currently, rectal temperature is widely used as an indicator of pig
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Nomenclature

ASPP Atrous Spatial Pyramid Pooling
Conv Convolution

ER Ear Root

FH Forehead

fi(xy) Base layer of the infrared image
fi(xy) Detail layer of the infrared image
f5(xy)  Base layer of the visible light image
fixy) Detail layer of the visible light image
flxy)  Layers of detail after initial fusion
FPS Frame per second, frame/s

MAE Mean absolute error

mAP Mean Average Precision, %

P Precision, %

R Recall, %

RC Rectum

R? Determination coefficient

RMSE Root mean square error

Rol Region of interest

practicality in large-scale commercial farming.

In the field of smart agriculture, prior studies have approached dig-
ital farming from diverse perspectives. Pratama, et al. (2023) advanced
livestock management through a virtual fencing system built on wireless
sensor networks and the Haversine method, highlighting spatial moni-
toring of animal herds, whereas the present study focuses on physio-
logical monitoring via body temperature detection. Hossain and
Chowdhury (2024) introduced AgroSense, an internet of things (IoT)-
based platform designed to improve crop selection and decision-making,
representing a direction toward digitalized agronomy, while this work
emphasizes animal health indicators in farming practice. Jumi (2024)
concentrated on goat farming by designing an IoT-enabled breeding
house, with particular attention to environmental variables such as
humidity and gases, in contrast to the current emphasis on body surface
temperature as a direct signal of health status. Shofura, et al. (2021)
applied artificial neural networks to the classification of monthly
weather conditions, showing how artificial intelligence (AI) can improve
meteorological forecasting, while here advanced detection transformers
are applied to livestock disease early warning. Galina, et al. (2022) in-
tegrated Sonic Bloom acoustic stimulation with IoT technology to
enhance crop growth, focusing on plant productivity, whereas this study
addresses animal health monitoring in real farm environments. Listia-
ningsih and Susanto (2023) proposed frameworks for smart environ-
ments and forest cities, emphasizing ecological sustainability at the
urban scale, which stands apart from livestock-focused health moni-
toring at the farm level. Taken together, these works illustrate the di-
versity of approaches within smart agriculture, while the present
research distinguishes itself by combining infrared thermography with a
frequency-spatial fusion transformer (FP-DETR) for robust, real-time
detection of pig body temperature.

In recent years, infrared thermography (IRT) has gained increasing
attention as a non-contact method for measuring animal surface tem-
perature. With its advantages such as convenience, speed, absence of
stress responses, and the ability to automate body temperature inspec-
tion (Bagavathiappan, et al., 2013), the IRT-based method has been paid
more and more attention (Zhang, et al., 2019), especially in inflamma-
tion detection (Whittaker, et al., 2023), ovulation monitoring (Marquez,
et al., 2019), abnormal behavior recognition and growth assessment
(Sasaki, et al., 2016).

In particular, infrared thermography combined with deep learning
algorithms has led to significant advances in livestock health moni-
toring. For example, R%Faster R-CNN (Lu, et al., 2021) and IT-PETE
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(Xiao, et al., 2021) have been applied to tasks such as automatic
recognition of dairy cow mastitis (Zhang, et al., 2020, nipple detection,
and pig’s ear detection (Zhou et al., 2017) and temperature extraction.
These studies achieved good detection accuracies over 80.41%, time
efficiency of 0.19 s and body temperature extraction error of 2.29°C.

Although existing models perform well, they are constrained to
spatial domain analysis and struggle to suppress environmental noise
such as low-frequency heat sources and high-frequency equipment
interference. Relying on pixel-level information makes these models
highly sensitive to lighting and background variations, reducing their
effectiveness in complex farm environments. In addition, reproducibility
across different experimental setups is often limited, which further re-
stricts their reliability and hinders stable deployment in large-scale,
noisy farming scenarios.

To overcome these limitations, frequency-domain information and a
parallel backbone structure are introduced into the DETR (DEtection
TRansformer), a target detection method that directly captures image
features through the self-attention mechanism of transformer, to
enhance its performance. Specifically, a parallel architecture of Vision
Mamba and CNN is adopted to achieve cross-regional correlation of
global features through global self-attention modeling and local texture
detail extraction, while frequency-domain information is incorporated
to decompose high and low-frequency components and construct fre-
quency features. By integrating the Spatial Feature Adaptation (SFA)
module and Band Feature Modulation (BFM) module, the proposed FP-
DETR (Frequency Parallel backbone DEtection TRansformer) method
realizes accurate separation of effective signals from environmental
noise. In recently, Frequency Dynamic Convolution Chen, et al. (2025)
further demonstrates the value of frequency-domain analysis, high-
lighting the necessity of multimodal fusion for advancing feature
learning.

In a previous study by our research group, the YOLOv5s-BiFPN
model was established, developed using infrared thermal imaging to
estimate the temperature of six body surface regions in pigs (forehead,
eyes, nose, ear roots, back, and anus) (Xie, et al., 2023). Strong corre-
lations were observed between rectal temperature and the temperatures
at the ear roots and forehead. Therefore, the ear roots and forehead were
selected as the regions of interest (Rols) for body surface temperature
detection.

On this basis, the present study introduces frequency-domain infor-
mation to enhance image features, separate environmental noise from
physiological signals, and integrate a lightweight parallel backbone with
additional methods. This design significantly reduces computational
complexity while improving the accuracy of feature extraction, thereby
enabling robust and efficient pig body temperature detection in real
farm environments.

The main contributions of this work are as follows:

(1). A parallel dual-backbone architecture was designed to achieve
efficient lightweight feature extraction.

(2). A frequency-spatial fusion strategy was introduced, enhancing
feature representation and suppressing environmental noise.

(3). Improved image segmentation and fusion algorithms were
developed, enabling high-precision contour recognition while
reducing computational cost.

(4). The FP-DETR model was successfully deployed on an inspection
robot and validated under real farm conditions, demonstrating its
practical feasibility for large-scale pig farming.

2. Materials and methods
2.1. Description of the pig house
The experimental data were collected in winter (February 22 to

March 26, 2024) and summer (June 22 to July 31, 2023; July 28 to
August 9, 2024) from two locations: Jingzhe Pig Farm in the Yabuli
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Forestry Bureau, China (Fig. 1(a)), and HongzhuKangyuan Pig Farm in
Harbin City, China (Fig. 1(b)).

At Jingzhe Pig Farm, the pig house was designed with a sloped roof,
insulated walls, and adjustable sunshade windows at the top, along with
a 1.5 m diameter exhaust fan installed on the outer wall near the
entrance. Feeding troughs (2 m x 0.8 m) were placed every five meters
along the walkways, and the floor was covered with thick bedding
composed of rice husks, rice bran, and corn stalks.

In contrast, the pig house at HongzhuKangyuan Pig Farm had a
semicircular vaulted structure with a concrete slatted floor, and its roof
was covered with a blue waterproof film to help regulate temperature
and humidity. Two exhaust fans (1 m and 1.5 m in diameter) were
mounted on the outer wall, and an electronic feeding station was
installed inside, with pigs fed twice daily.

2.2. Data collection

Data were collected from 139 ternary hybrid pigs (Duroc x [Land-
race x Large White]), aged 240-270 days, with an average weight of
230 kg in summer and 210 kg in winter. Pigs were fed daily at 8:00 and
15:00, and measurements were taken before and after feeding, specif-
ically at 6:00-7:00, 9:00-10:00, and 16:00-17:00. Collected data
included skin temperature, rectal temperature, and environmental
conditions within the pig houses.

Rectal temperature was measured using a specialized livestock
thermometer (Nierni, China; range 20-42.99°C; accuracy + 0.5°C). The
thermometer was inserted 10 cm into the rectum and held for 5-7 s; each
measurement was repeated twice, and the mean value was recorded as
the rectal temperature. Ambient temperature and humidity were
measured using a handheld meter (TA622A, TASI). Body surface tem-
perature was measured with a thermal imaging camera (Fotric Model
287-120, Fotric, Texas, USA; range 40-150°C; accuracy + 2°C), with
emissivity set to 0.98 and the distance fixed at 1 m, focusing on the ear
root and forehead regions.
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According to our previous study, the maximum temperature from the
ear root and forehead has the highest Pearson’s correlation coefficient
with porcine rectal temperature (ER: 0.6859, FH: 0.6609), and the
maximum temperature is effective in preventing ambient low-
temperature interference. So they are selected as the Rols for pig’s
body surface temperature detection (Xie, et al., 2023). The collected
temperatures on Rols are shown in Table 1.

2.3. Dataset division

The dataset includes a total of 1688 sets of data, each of which
consists of visible light images and corresponding thermal infrared im-
ages, with a total of 3376 images. Each image is labeled with Labelme
for the ear root and the forehead area. These images are divided into
training set (2704 images), validation set (338 images) and test set (338
images) at a ratio of 8:1:1, and the thermal infrared images correspond
to the visible light images. In order to ensure the fairness and general-
ization of the model training, the dataset was randomly divided ac-
cording to this ratio rather than being split sequentially. To guarantee
transparency and reproducibility of the randomization, a fixed random
seed was used during the partitioning process.

3. FP-DETR model development
3.1. Workflow of FP-DETR

The lightweight network structure is integrated with the temperature
extraction process to improve both the efficiency and accuracy of

detection. The overall workflow of FP-DETR is illustrated in Fig. 2.

(1) Image input: Infrared thermal images and corresponding visible
light images are used as inputs.

Fig. 1. Pictures of pig houses inside and outside: a. Jingzhe pig farm. b. HongzhuKangyuan pig farm.
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Table 1
Experimental temperature statistics.

Area Summer Winter

Maximum (°C) Minimum (°C) Average (°C) Maximum (°C) Minimum (°C) Average (°C)

ER 40.4 29.4 36.8 39.8 25.7 36.6

FH 39.8 25.7 37.7 39.5 29.4 37.2

RC 39.7 37.5 38.5 39.7 37.5 38.5
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Fig. 2. The overall workflow of FP-DETR.

(2) Image segmentation: Key features on the pig’s body surface are
extracted from the infrared images, which are then used to
segment the image.

(3) Image Fusion: The pig’s outline is fused using a trained model.
Temperature data from the infrared image are combined with
details from the visible light image to generate a fused image
containing both temperature and coordinate information.

(4) Temperature extraction: The fused image is passed into the Rol
detection module to identify the regions of interest. Based on
these regions, the maximum temperature values are extracted
from the fused image and recorded.

3.2. Image segmentation

3.2.1. Image registration

The visible light image captured by the thermal imaging camera has
a resolution of 600 x 1200, while the infrared image has a resolution of
512 x 384, resulting in differences in both resolution and visual
appearance (Fig. 3). Such discrepancies may affect the accuracy of ob-
ject recognition.

Therefore, in this study, the AKAZE method was applied to align the
contours of visible and infrared images at the key regions of the pig’s
body. The main steps are as follows:

(1) Grayscale conversion: Both infrared and visible light images were
converted to grayscale to reduce computational complexity.

(2) Scale space construction: A scale space was generated through
nonlinear diffusion filtering, and key points were detected using a
regional method. These key points correspond to local extrema in
the image, representing pixels with maximum or minimum gray
values within their neighborhoods.

(3) Binary descriptor generation: For each pixel, a binary descriptor
was created based on the gradient directions of its neighboring
pixels relative to a threshold direction. The value was set to 1 if
the gradient direction matched the threshold direction and
0 otherwise.

(4) M-LDB feature description: The Modified Local Difference Binary
(M-LDB) operator was used to describe the area surrounding each
feature point, as shown in Eq. (1). This operator generates a bi-
nary code by comparing the intensity of neighboring pixels with
that of the central pixel, thereby capturing local texture infor-
mation effectively.

N-1
Mipaij) = Z b x2¢ (@)
k=0

where (i,j) represents the pixel position, N is the length of the binary
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rw

raTRIC

Fig. 3. Visible light image and corresponding infrared image.

descriptor, and b is the k-th position in the binary descriptor.

After the feature points were obtained, a transformation matrix was
constructed using the Random Sample Consensus (RANSAC) algorithm
to scale the visible light image and align it with the target region in the
thermal infrared image as shown in Eq. (2). Subsequently, an external
rectangular frame was generated based on the body surface contour
identified in the thermal infrared image, and the corresponding region
was extracted from the visible light image using this frame.

X1 hi hiz his X
1| = |ha ha has| x|y (2
1 hs; hsy hss 1

where x and y are the pixel coordinates of the visible light image; x; and
y; are the coordinates of the pixels in the visible light image after
registration; hy1(hgo) is the horizontal (vertical) scaling factor; hjz (hs1)
is the horizontal (vertical) tilt factor; h;3 (hs3) is the horizontal (vertical)
translation factor; h3; and hs; are perspective transformation factors; hss
is the normalization factor, which is set to 1 in this paper; 1 in the matrix

Fig. 4. Image registration effect. (a) Before registration. (b) After registration.
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is used to introduce a point of the third dimension in the two-
dimensional image transformation, so as to avoid the translation term
in the image and reduce the computational complexity. The image
registration effect is shown in Fig. 4.

3.2.2. Semantic segmentation

To automatically segment pig body contours and provide pixel-level
key regions for temperature measurement from fused infrared and
visible images, an improved DeepLabv3+ (Chen et al., 2018) semantic
segmentation algorithm was developed to achieve both lightweight
performance and high contour accuracy.

The enhanced DeepLabv3+ architecture achieves lightweight seg-
mentation through three structural modifications: replacing the Xcep-
tion backbone (Chollet, 2017) with MobileNetV4 (Qin et al., 2024),
optimizing the dilation rates of atrous convolutions, and integrating
CBAM (Woo et al., 2018) dual-attention modules at the encoder’s output
layer.

As illustrated in Fig. 5 (adapted based on (Chen et al., 2018)), the
segmentation model consists of four main components: an input layer,
an encoder, a decoder, and a prediction layer.

(1) Input layer

The input layer of the segmentation model takes as input a registered
visible light image with a resolution of 512 x 384. To match the model’s
input requirements, the image is resized to 512 x 512.

(2) Encoder

In the encoder, the first deep convolutional neural network module
(MobileNetV4) is used to perform feature extraction on the input pig
image. Through the MobileNetV4 network, a high-level semantic feature
map (32 x 32 x 320) and a low-level semantic feature map (128 x 128
x 24) are obtained. The low-level semantic features are passed directly
to the decoder, while the high-level semantic features are forwarded to
the Atrous Spatial Pyramid Pooling (ASPP) module (Chen et al., 2018).
By applying dilated convolutions with varying dilation rates, the ASPP
module further enhances feature extraction, enabling the capture of
more discriminative information.

MobileNetV4 (Qin et al., 2024). achieves fast and accurate vision
modeling for mobile and edge devices through an efficient lightweight
design that combines depthwise separable convolution and pointwise
convolution. In this study, depthwise separable convolution was
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adopted to reduce computational complexity. Specifically, the input pig
image is decomposed into three channels (R, G, and B), after which a 3
x 3 convolution is independently applied to each channel, generating
corresponding feature maps (Fig. 6).

Compared to traditional convolution, which uses a K x K kernel to
process Di, channels, the computation required to obtain a feature map
with Doy channels is D, X Doy X K x K. Notably, the computation is
reduced to Dy, x (Doyt + K x K) in this paper, which significantly de-
creases the computational cost and achieve a better lightweight model.
At the same time, the 3 x 3 deep convolution with a step size of 2 has
fewer parameters and computations. It reduces the amount of data
processed by the subsequent layer, thus lowering the memory footprint
and improving computational efficiency, as shown in Eq. (3).

Mobileyga (X) = Concat(attention, , ----- , attention,, ) W°
K
attention; = Softmax (W ) (SRxX)W") 3)
Vi

where SR represents the spatial downsampling performed by the deep
convolution module with step size of 2, W is the weight matrix, Softmax
is an activation function that maps the input value to the probability
distribution between 0 and 1; dy is the dimension of the input vector; and
Qj is the j-th transformed vector of the input.

The ASPP module consists of one standard convolution, three dilated
convolutions with dilation rates of 12, 24, and 36, and one pooling layer,
all operating in parallel. To minimize the feature loss, the outputs from
these five parallel operations are combined and fused using the Concat
module. Subsequently, the number of channels is adjusted througha 1 x
1 convolution, after which the CBAM module is applied to enhance
feature representation by integrating both channel and spatial attention,
thereby improving the learning of pig-specific features.

CBAM(Woo et al., 2018) is a lightweight dual-attention mechanism
that integrates a Channel Attention Module (CAM) and a Spatial
Attention Module (SAM). It enhances the extraction of key features from
the pig’s body by refining information at both the channel and spatial
levels (Fig. 7 adapted from (Woo et al., 2018)). When combined with the
ASPP module, CBAM further strengthens feature representation,
ensuring that both multi-scale context and attention-guided details are
effectively captured.

The CAM evaluates the relative importance of different feature
channels and assigns corresponding weights, enabling the segmentation
model to focus more effectively on channels that are critical for Rols on
the pig’s body surface relevant to temperature detection. The SAM
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Fig. 5. Structure of the semantic segmentation model.
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operates in the spatial domain, enhancing the recognition of contour
features on the pig’s body surface and improving segmentation
accuracy.

(3) Decoder

The number of low-level semantic channels is first adjusted using a 1
x 1 convolution to match the channel dimensions of the decoder output.

are passed into the prediction layer for output generation.
(4) Output layer

The size of the upsampled feature map is adjusted so that the pre-
diction output matches the resolution of the input image. Each pixel is
then classified using the Softmax function, enabling automatic seg-
mentation of the pig’s body.

The resulting features are then further fused with a 3 x 3 convolution.
After the final upsampling and processing step, all aggregated features

Visible Light
Image Base Layer
( f1"(X,Y)
Initial Integration
Base Layer
Infrared Image fxy)
Base Layer
fz"(X’Y)
Segment
Visible Light
Image Detail Layer
fld(x,Y)
Initial Integration
Detail Layer
0 fi(x.y)
Infrared Image
\ Detail Layer
fzd(X,Y)

Fig. 8. Flow chart of infrared and visible light image fusion.
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3.3. Image fusion

Since infrared thermal images contain skin temperature information
but have lower resolution and fewer details, while visible light images
provide richer detail for accurate identification, image fusion was
applied to enable precise temperature extraction (Fig. 8). The module
takes as input a visible light image and its corresponding infrared image.
Both images are decomposed into scale layers: the visible light base layer
ﬁ (x,y), the visible light detail layer f'f(x,y), the infrared base layer fz’(x,
y), and the infrared detail layer f3(x,y). Different fusion strategies are
then applied to the base and detail layers, respectively (Fig. 8).

(1) The base layer and detail layer of the visible light image (ﬂ’ X Y)
and f‘f(X, Y)) and the base layer and detail layer of the infrared
thermal infrared image (fg’ (X, Y) and fgl(X, Y)) are obtained after
decomposition using a mean filter (window size is 35).

(2) The base layer is obtained using the weighted average method to
calculate the base layer fb(x,y) after the preliminary fusion. The
detail layer is derived by calculating the Euler distance to obtain
the fusion coefficient matrix &;(x,y) and £2(x,y). The preliminary
fusion of the detail layer fd(x, y) is then obtained, as shown in Eq.
4.

fd(x7.y) :81(x7.y)fld(x7y) +f2d(x7.y)82(x7.y) 4

3.4. Temperature extraction

3.4.1. Detection model for the Rol on pig body surface

The body surface key temperature identification model is composed
of five main components: Input, Backbone, Neck, Head and Output
(Fig. 9).

(1) Input layer

The input layer consists of fused images that have been pre-processed
and normalized to 640 x 640 pixels. To standardize the inputs, partially
registered images are resized to 640 x 640, ensuring stability and con-
sistency in model processing.

(2) Backbone

Backbone

7 5
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The backbone network is primarily responsible for multi-scale
feature extraction from pig body surface images to ensure accurate
detection. A parallel backbone architecture was introduced to capture
contextual information through multi-path computation units, where
Vision Mamba encodes global features via parallel self-attention mod-
ules to establish cross-region correlations. At the same time, the network
extracts local textures through nonlinear transformations while inte-
grating global information, thereby achieving comprehensive surface
sensing.

Regional Feature Discriminative Adaptive Processor (RFDAP): The
RFDAP further refines this process and consists of three components
(Fig. 10): frequency feature construction, spatial feature adaptation, and
band feature modulation.

Frequency Feature Construction (FFC): The workflow for frequency
feature construction is as follows: First, the input image data X €
REXWxCn i5 equally divided by channel dimension into n channel

grouping data blocks X € RHXWX%(i =1,2,---n), each channel-grouped
data block X; carries information of a specific image channel. Then, X; is
transformed from the spatial domain to the frequency domain by
Discrete Fourier Transform (DFT) to obtain the frequency domain
feature representation F(X;). DFT and the inverse DFT (iDFT) are
calculated as shown in Egs. (5) and (6).

1 M1 N1 _j2n <m,k +m)

F(k,l) = - mZ ;ﬂm, mxe \"" ®)
M-1 N-1 o mk l’)

famm) =" SRk xe (”“” ©
k=0 [=0

where f (m, n) is the discrete signal in the spatial domain (e.g., image
pixel values); F (k, ) is the discrete spectrum in the frequency domain; M
and N are the height and width of the signal; j is an imaginary unit; and
j2m (m_k+gl>
MTN) . . . . .

e is the frequency-domain basis function characterizing the
phase and amplitude of the frequency components.

Second, the frequency domain data F(X;) is sorted by frequency and
processed through the Fully-Connected (FC) layer to generate the
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Fig. 9. Structure of the detection model for the Rol on pig body surface.
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feature representation FC(sort(F(X;))), and then processed by the Sig-
moid function to obtain the modulation factor f; = ¢(FC(sort(F(X;))) ).

The frequency domain data is transferred back to the spatial domain
by the inverse iDFT to obtain W; (W; = F~1(F(X;))). Eventually, the
group W; are summarized by Hadamard product with the corresponding
modulation coefficients f;, and the output feature F; = Y[, f;-W; s ob-
tained. The Hadamard product formula is shown in Eq. (7).

ap ain bn bin anbn @1nb1n
: : : : : : @)
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Spatial Feature Adaptation (SFA): The spatial feature adaptation
process (Fig. 11 (adapted from (Chen et al., 2025))) is designed to
strengthen FP-DETR’s capacity to capture features from the input data

by accurately modulating weights, thereby improving the model’s

adaptability and representational power.

In this study, a 1-D convolution is applied to the local channel to
effectively capture local channel information while significantly
reducing computational cost. To address the limited utilization of global
feature information in local branches, additional global channels are
introduced to aggregate global context, followed by predicting a mod-
ulation value across the input channel, output channel, and kernel
dimensions.

Band Feature Modulation (BFM): Although the weights generated by
the Frequency Feature Construction (FFC) and Spatial Feature Adapta-
tion (SFA) modules enhance representation, they still maintain spatial
invariance at the global level. To address this limitation, BFM is incor-
porated to achieve targeted weight conversion for different frequency
components. Specifically, feature frequency decomposition is performed
by applying a frequency-domain transform to the input feature map X,

N
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Fig. 11. Structure of spatial feature adaptation.
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and binary masks Mp (withb =1, ....,
into different frequency bands X, (X, = F~!(M, ® F(X))), where F and
F~! are the DFT and the iDFT); then the frequency feature modulation is
performed, and the spatially variable modulation coefficients Ay(A, =
Sigmoid(Conv2D(Xp))). Each frequency band is then modulated by
generating spatially varying coefficients Ap (Ap
Sigmoid(Conv2D(Xp))) through a convolutional layer followed by a
Sigmoid activation. Finally, the modulated frequency bands are fused

B, and B = 3) are used to separate it

through element-wise summation to obtain the output feature Y (Y =

f;é (Ap ® Xb)), enabling FP-DETR to adaptively capture the complex

spatial-frequency structure of the image and improve the representation
of both high- and low-frequency features.

(3) Neck

The Adaptive Interaction Feature Integration (AIFI) module is
designed to further enhance feature representations by fully leveraging
global information (Fig. 12). The input feature map has dimensions (B,
C, H, W), where B denotes the batch size, C the number of channels, and
H and W the spatial height and width, respectively.

First, the Conv1-D and Embedding modules are applied to the input
feature map, reducing the number of channels by half and producing a
feature map with dimensions (B, C/2, H, W). Next, the spatial di-
mensions H and W are flattened and reshaped into (B, C/2, H x W) to
prepare for subsequent processing. Positional information is then
incorporated using sine-cosine embedding, which enables FP-DETR to
accurately capture the spatial positions of features. The calculation
process is shown in Egs. (8) and (9).

. 0s
PE pos i) = sm( P L) ®
100009mode
0s
PE (pos 2i+1) = €OS <p21> (C))
100009modet

where PE is the positional encoding matrix used to give positional in-
formation to the elements of the model sequence; pos means the index of
the element’s position in the sequence (from 0), i is the index of the
encoding vector dimension (also from 0, 2i, (2i + 1) corresponds to the
even and odd dimensions, respectively); dmodel refers to the hidden layer
dimension of the model; 10,000 is a fixed constant used to scale the
exponential function and modulate the variation of the encoding period.

After that, the Multi-Head Attention module is applied to capture
long-range dependencies and contextual relationships among features,
followed by a Feed Forward Neural Network (FFN) that further refines
the feature representation through nonlinear transformations. Finally,

[B,C/2,H xW]

[B,C.H,W] [B,C/2,H,W]

Sine-Cosine

(ou\ 1d
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the enhanced features are projected back to the input dimensions using a
Linear layer and classified with the Softmax function.

(4) Head

The input data are first processed by the Uncertainty-Minimum
Query Selection Module (Zhao et al., 2024), which filters out
non-essential information. The refined data are then concatenated and
activated to determine the TOP-K indices for location selection.

(5) Output

The output layer is responsible for predicting both the target’s po-
sition (bounding box) and its classification (confidence score) based on
the results from the Head layer. The category score map (Sclass) is
generated according to Eq. (10). Regression is then applied to produce
the bounding box parameters, including the center coordinates (x, y),
confidence score p, width w and height h as defined in Egs. (11)-(15).

Seiass (X, Y, €) = Softmax(fi (x) X fa(x) + beiass(c))
k k k .. (10)
= Zi:l Zj:l Zd:lwdaﬂ (17]7 d7 C)
fz(x) = FNeck(x + l,)’ +j7 d)
k k Chec .. . . (11)
X, = U(Zizl Zj:l d:1kWX(l’J* d) X FNeck(x +1,y+], d) + bx)
k k  Check
_G<ZZ Wy l]7 XFNeck(x+i¢y+jvd)+bY> (12)
i=1 j=1 d=1
k k_ Check
P—”(ZZ WP l]v XFNeck(x+ivy+jvd)+bP> (13)
o1 j=1 d=1
. ezl 12, 1ZCN“"W (i,d) X Fyeck (X+i.y+j,d)+by 14)
. ez: 121 1ZCNEEkW (i,d) X Fyeck (x+i.y-+.d)+by, (15)

where ¢ represents Sigmoid activation function to limit the output be-
tween 0 and 1; and e* is used to keep width and height at positive values.

Finally, the model outputs the coordinates (x., y., w, h) of the
bounding box and the confidence score p for each object in the image.

3.4.2. Temperature extraction

The temperature extraction is divided into three parts: (1) the fused
image is fed into the Rol detection module to obtain the horizontal and
vertical coordinates of the bounding box; (2) all temperature values
within the defined region are extracted from the fused image; (3) the
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Fig. 12. Structure of AIFI, which integrates a convolution model with multi-head attention from a typical transformer model.
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maximum temperature within the Rol is selected to represent the pig’s
body surface temperature.

3.5. Model evaluation indicators

Precision (P), Recall (R), FPS, mAP@50, F1 Score and calculations
volume of Parameters are used to evaluate the detection model perfor-
mances as shown in Egs. (16)-(21), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), R-Square (Rz), Confidence Interval (CI)
(95%) and t (p-value) are used to evaluate the accuracy of temperature
extraction as shown in Egs. (22)-(26).

TP
P15 (16
TP
- 0,
R = 0 x 100% a7
FPS — - as)
P
Confidence = P,(Object) x IoUqst (19)
2 x TP
FIScore = 5 TP+ FP + EN 20)
C
mAPQ@50 = ZziéAP @1
1< ~\2
RMSE = |~ ;(.Yi -5 (22)
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where TP is the number of targets in the key areas that are correctly
detected in the pig image; FP is the number of targets that identify errors
in critical areas; FN is the number of targets that are identified as false
but are true; y; and y; are the i-th true and predicted values; n is the
number of image test sets; ¥y is the sample mean; p; is an abbreviation for
Processing time per frame, which is the time it takes for the model to
detect each frame of image; P,(Object) is the probability of the existence
of the object in the bounding box, if there is an object, P.(Object) = 1,
otherwise P.(Object) = 0; IoU is the intersection ratio of the real box
(ground truth) and the predicted box (predicted IoU is the intersection
ratio of real box (ground truth) and predicted box (predicted box); C is
the total number of categories; AP; represents the AP value of the i-th

category; d is the mean of the differences; s, is the standard deviation of
the differences; t,/ is is the t-distribution critical value for a given sig-
nificance level a.

Fig. 13. Visualization of the detection and segmentation model. (a) Original Backbone. (b) Vision-Mamba Backbone. (c) Parallel backbone. (d) Normal. (e) Bright

light. (f) Face masking. (g) Top view.
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4. Results and discussion
4.1. Performance analysis of the detection and segmentation model

This part systematically illustrates the differences in feature extrac-
tion across architectures through visual analysis of feature heatmaps
(Fig. 13(a)-(c)). The traditional backbone (a) exhibits localized recep-
tive field characteristics, with activations concentrated on specific re-
gions of the face, such as the ear and forehead, while its capacity to
model cross-regional correlations is markedly limited. By contrast, the
Vision Mamba architecture (b) presents a more globally distributed
activation pattern, indicating its ability to establish long-range de-
pendencies across regions through a bidirectional state space modeling
mechanism. Its responses not only extend over a broader spatial range
but also display superior spatial continuity, highlighting the advantages
of state space models in capturing global contextual information.

The proposed parallel hybrid architecture (c) integrates the strengths
of both approaches. Compared with a single traditional backbone, it
preserves local feature extraction while substantially broadening the
spatial coverage of activations; compared with Vision Mamba alone, it
enhances activation intensity in critical regions. Traditional backbones
excel at capturing fine-grained local details through layered receptive

Deeplabv3+

This Study

Original

Manual

This Study
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fields, whereas Vision Mamba establishes semantic associations across
distant regions through global modeling. Their combination produces
complementary effects across multiple scales, yielding feature repre-
sentations that remain sensitive to local detail while providing global
contextual understanding, which aligns with the expected outcomes of
the experiment.

The detection results for Fig. 13(d-g) demonstrate FP-DETR ’s per-
formance under various conditions, with detailed analysis provided for
(d) normal light, (e) bright light, (f) face masking, and (g) top view
scenarios.

In the normal light condition (Fig. 13(d)), FP-DETR successfully
identifies the Rol with a high confidence of 0.91. This result benefits
from uniform lighting, clear image quality, and well-defined facial fea-
tures, such as contours and textures, which closely match the training
data. Under such conditions, the model can achieve stable recognition
with high confidence.

In the bright light condition (Fig. 13(e)), the confidence decreases to
0.75, though it still remains reliable. The main reason for this reduction
is local overexposure and reflections caused by strong illumination,
which obscure critical features such as the eyes and mouth. Further-
more, changes in lighting alter the image’s color distribution, making it
harder for FP-DETR to extract sufficient discriminative features, thus

Fig. 14. Visualization of the segmentation model. (a) Foreground. (b) Background. (c) Segmentation result. (d) Comparison of manual and model. In the upper
dashed box, (a), (b), and (c) correspond to the 1st, 2nd, and 3rd column figures (foreground, background, and the result) respectively; (d) in the lower orange box
corresponds to all figures in this area, showing the three-group comparison (original image, manual segment and segmentation result of the proposed method) for

pigs from different views.



J. He et al.

lowering the confidence slightly.

For the face masking condition (Fig. 13(f)), the model reaches a
confidence of 0.81. Occlusion by dirt or padding directly covers some
facial features, leaving FP-DETR to rely on visible regions like the eyes
and forehead. While this increases recognition uncertainty, the combi-
nation of local and global cues still allows for reasonably accurate pre-
dictions, though with lower confidence than in normal conditions.

In the top-view condition (Fig. 13(g)), FP-DETR achieves a confi-
dence of 0.82. Changes in perspective modify the geometric structure of
the face, causing some key features to become distorted or partially
invisible. This creates abnormal proportions that complicate detection.
Nevertheless, by leveraging stable features such as ear positions and
their relative alignment with the body, FP-DETR adapts effectively to
these spatial changes, maintaining robust performance across varying
viewpoints.

The effects of the improved DeepLabv3+ model on foreground (a),
background (b), and final segmentation results (c) are presented in
Fig. 14(a—c). The highlighted regions represent the key feature areas
identified by FP-DETR.

For foreground segmentation (Fig. 14(a)), the improved model
shows a clear increase in highlighted regions, such as the more distinct
left front hoof, capturing a greater number of feature points. This
enhancement allows more accurate localization of pig body contours
and internal feature details, thereby improving recognition accuracy.

In background segmentation (Fig. 14(b)), the model demonstrates
better contour extraction, successfully identifying fine structures such as
the ears and front paws. This improves detailed feature capture and
contributes to more accurate body contour delineation.

For the final segmentation results (Fig. 14(c)), the pig’s overall body
contour appears smoother, with highlighted areas concentrated on the
body region, reducing background misclassification. These results
confirm that FP-DETR significantly improves the extraction and repre-
sentation of pig body surface features, ensuring more precise segmen-
tation for downstream temperature detection.

Across the three test samples (Fig. 14(d)), the segmentation results of
the proposed model show high consistency with manual annotations.
The calculated Intersection over Union (IoU) values were 0.914, 0.920,
and 0.849, with an average of 0.894. This indicates that nearly 90% of
the segmented regions overlap with expert annotations, demonstrating
strong reliability. The best performance (IoU = 0.920) was observed in
relatively simple contours, while the lowest value (IoU = 0.849)
occurred in more complex structures with sharp edges. A closer in-
spection reveals that discrepancies mainly appear along fine boundaries,
such as the tips of ears and abrupt contour transitions, where manual
annotations capture subtle edges with higher precision. Despite these
minor differences, the model maintains smooth and coherent contours,
achieving segmentation quality that is comparable to human annotation
and sufficient for reliable temperature extraction tasks.

In summary, FP-DETR shows stable recognition performance under
different lighting conditions (normal, strong light), facial occlusion, and
top-down view angles. Under normal lighting (Fig. 13(d)), FP-DETR
achieves a confidence level of 0.91, due to uniform lighting and clear
facial features; under strong light (Fig. 13(e)) and occlusion (Fig. 13(f))
conditions, the confidence level remains above 0.75, indicating that FP-
DETR has a certain degree of robustness to local feature loss and lighting
interference. The confidence level of 0.82 under a top view (Fig. 13(g))
further verifies FP-DETR ’s adaptability to different angle changes.

The improved Deeplabv3+ model performs exceptionally well in
image segmentation tasks: foreground segmentation (Fig. 14(a))
significantly improves the ability to capture key feature points (such as
the left front hoof); background segmentation (Fig. 14(b)) optimizes
contour recognition accuracy (such as ears and front paws); the final
result (Fig. 14(c)) presents a smoother pig body contour segmentation
with reduced false detection rates. Experiments have proven that FP-
DETR effectively improves feature extraction accuracy and robustness
in complex scenes by integrating frequency domain and spatial domain
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information.
4.2. Comparation with other models

In testing the models, this study conducted five repeated experi-
ments, where each training was performed under exactly the same
hardware and software environment. The final results were subjected to
significance testing, and the results are shown in Table 2.

As shown in Table 2, the FP-DETR model achieves 99.07% precision
and 96.75 + 0.48% recall with (5.9 & 0.07) x 10° parameters and 8.79
=+ 0.28 hours training time. Compared with Faster R-CNN and YOLOvVS,
FP-DETR achieves an overall improvement in parameters, FPS, and ac-
curacy, with a 91.8% and 7.37% reduction in parameters, a 50 FPS and
34 FPS increase in frame rate, and a 9.63% and 4.29% increase in
precision.

Compared with YOLOvV9, YOLOvV12, and RT-DETR, despite the pa-
rameters increase of 11.72%, 1.03%, and 39.72%, the frame rate is
significantly improved by 40 FPS, 38 FPS, and 26 FPS, and the precision
is improved by 6.42%, 5.23% and 4.95%, and the FP-DETR has signif-
icantly improved the detection efficiency and accuracy while consid-
ering the number of parameters, showing excellent comprehensive
performance.

In terms of storage size, FP-DETR requires 16.9 MB, which is slightly
larger than YOLOv12 (15.8 MB) and comparable to YOLOV9 (17.2 MB),
while being much smaller than Faster R-CNN (100.2 MB). This compact
model size, combined with high accuracy and speed, makes FP-DETR
suitable for deployment on edge devices with limited hardware
resources.

Compared with the recently proposed YOLOv12 model, FP-DETR
demonstrates superior performance in both accuracy and efficiency.
Specifically, FP-DETR achieves a higher precision (+5.22%) and recall,
while delivering a significantly faster frame rate (+38 FPS). Although
the number of parameters is slightly higher (+1.2%), the lightweight
dual-backbone design and the integration of frequency-spatial domain
fusion allow the model to better suppress environmental noise and
enhance feature extraction. This balance of accuracy, speed, and
parameter efficiency highlights the advantages of FP-DETR in real-time
pig body temperature detection, making it more suitable for practical
deployment under large-scale farm conditions.

Table 3 presents the P-value calculations for FP-DETR compared to
the baseline models. These P-values help further validate the superiority
of FP-DETR over the baseline models in terms of precision, recall, and
FPS. In all comparisons, the P-values for precision, recall, and FPS are
consistently below the 0.05 threshold, indicating that the observed im-
provements are not due to random variation but are statistically robust
and reliable.

For instance, FP-DETR achieved markedly higher precision than
YOLOV9, YOLOv12, and RT-DETR, with P-values of 5.92 x 1077, 8.35 x
10_7, and 3.10 x 10_6, respectively. Similarly, recall improvements
over YOLOv8 and YOLOv12 yielded P-values of 2.55 x 107 and 9.87 x
107, while FPS comparisons demonstrated significant advantages even
against RT-DETR (P = 9.55 x 10 4). These results indicate that FP-
DETR’s enhancements in accuracy, recall, and processing speed are
statistically significant and reproducible, thereby reinforcing the reli-
ability and scientific rigor of the proposed model.

Therefore, the FP-DETR model can achieve good detection accuracy
and is a lightweight model, it has possibility to be deployed on edge
devices with limited hardware performance.

4.3. Comparisons to the existing detection methods

There are some previous studies on the automatic detection for the
Rol on pig body surface, the comparison results are shown in Table 4.
For example, Guo, et al. (2023) developed a deep learning framework
for individual pig detection and tracking, achieving a detection accuracy
of 94.72%, 7.5 x 10° parameters and a speed of 12 FPS. In our research
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Table 2
Comparison with different models.
Model Precision (%) Recall (%) Size (MB) Parameters/10° TrainTime (h) FPS (frame/s)
Faster R-CNN 89.44 £ 0.49 87.60 £ 0.58 99.30 + 0.29 72.06 + 0.06 9.84 £ 0.30 17+£5
YOLOV8 94.78 + 0.40 93.15 + 0.57 16.43 + 0.27 6.38 + 0.04 10.14 + 0.21 33+4
YOLOV9 92.65 + 0.52 91.95 + 0.39 17.20 + 0.39 5.29 + 0.03 11.66 + 0.21 27 £2
YOLOV12 93.84 + 0.53 92.62 + 0.38 15.87 + 0.20 5.85 + 0.06 9.23 £ 0.36 20+6
RT-DETR 94.12 + 0.53 93.68 + 0.61 15.20 + 0.34 4.23 + 0.05 10.29 + 0.19 4146
This study 99.07 £ 0.50 96.75 + 0.48 16.79 + 0.21 5.91 + 0.07 8.79 + 0.28 67 + 10
group, Xie, et al. (2023) developed an infrared thermal imaging detec-
'11)“ab11e 3 Jeulati ¢ EP-DETR d with baseli del tion method based on YOLOvV5s-BiFPN with detection accuracy of
-value calculations of FP- compared with baseline models. 96.88%, the frame rate of 100 FPS, and the number of parameters of 5.3
Model (FP-DETR) P value x 10°. Zhang, et al. (2024) proposed a temperature extraction algorithm
Precision Recall FPS based on registered images, although with less parameters of 3.59 x 109,
. o .
Faster R.CNN 1.60 x 10-10 3.42 % 10-° 491 x 10 the precision of 93.5% is relatlv.ely low.
YOLOVS 2.48 x 10~8 2.55 x 105 2.86 x 10~* The accuracy of FP-DETR is 98.9% (+4.18% compared to Guo,
YOLOV9 5.92 x 1077 1.13x10°° 7.44 x 1074 +2.02% compared to Xie, +5.4% compared to Zhang), although the FPS
YOLOv12 8.35 x 10:: 9.87 x 10:2 1.21 x 1Oj (68) is lower than that of YOLOv5s-BiFPN (100), it is over the 60-frame
RT-DETR 8.10 x 10 6.42 x 10 9-55 x 10 limit of the edge device, and 6.8 times faster than that of YOLOv7-tiny-
Ghost (10FPS). The number of parameters (5.9 M) is only slightly higher
than that of YOLOv5s (5.3 M) and much lower than that of CNN (7.5 M),
Table 4 which achieves the best balance of accuracy-speed-lightweight.
Comparison with existing methods.
Literatures Specific Precision FPS Parameters 4.4. Automatic temperature extraction and veriﬁcation
algorithms (%) (frame/s) (10%
(Guo, etal, CNN 94.72 12 7.5 x 10° To assess the accuracy of FP-DETR in extracting surface temperatures
2023) . . from key body regions of pigs, the automatically extracted values were
(Xie, et al., YOLOvVS5s-BiFPN 96.88 100 5.3 x10 j .
2023) model compared with manually measured ones (Fig. 15). The results show a
(Zhang, et al., YOLOv7-tiny- 93.5 10 3.59 x 10° strong correlation, with an R? of 0.957, while the MAE and RMSE were
2024) Ghost . 0.108 and 0.142, respectively. These metrics indicate that FP-DETR
This study FP-DETR 98.9 68 59 x 10 provides highly consistent temperature estimates, closely matching
manual measurements and ensuring reliable application in practical
settings.
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J. He et al.

Fig. 15 illustrates the differences between manually extracted and
model-extracted temperatures across various ranges. On the plot, the
horizontal axis represents manual extraction values, while the vertical
axis shows the difference between automatic and manual extraction
(Auto Extract — Manual Extract). The mean difference is close to zero,
indicating strong consistency between the two methods and validating
FP-DETR’s overall accuracy. Within the 38.0-38.6°C range—the normal
temperature interval for pigs—data points are densely clustered and
align closely with the zero line. This pattern demonstrates that model-
based extraction matches manual measurements particularly well in
this physiological range, confirming FP-DETR’s high precision and
strong applicability under typical farm conditions.

What’s more, the statistical analysis reveals that the automatic
extraction algorithm we proposed shows a very small difference
compared to manual extraction. The mean difference between the two
methods is only 0.0009, indicating that the temperatures extracted by
both methods are nearly identical. The 95% confidence interval for the
difference is between —0.0414 and 0.0431, suggesting that the true
difference is negligible and close to zero.

Furthermore, the p-value from the paired t-test is 0.9683, which is
significantly greater than the 0.05 threshold, indicating that there is no
statistically significant difference between the two methods. This im-
plies that the observed differences are likely due to random variation
rather than a systematic bias.

4.5. Ablation experiments

4.5.1. Model ablation experiment

As shown in Table 5, compared with the baseline, the Dual-Backbone
combined model improves precision and F1 score by 0.91% and 1.05%,
respectively, although mAP@50 decreases by 0.82%. Multi-scale and
multi-level extraction offered by the dual-backbone design enriches
feature representation, supporting more accurate recognition and
consistent classification. At the same time, however, the interaction
between features from both backbones may disrupt certain high-recall
characteristics, thereby reducing average accuracy at the 50% IoU
threshold. The RT-DETR with the RFDAP module yields improvements
of 1.14% in precision, 1.09% in F1 score, and 0.28% in mAP@50. These
gains result from the RFDAP module’s ability to strengthen attention
mechanisms, increase feature sensitivity, and optimize feature quality,
allowing more efficient recognition and classification across varied
scenarios.

When Dual-Backbone and RFDAP modules are combined, FP-DETR
achieves even greater improvements, with increases of 2.32%, 1.22%,
and 0.39% in precision, F1 score, and mAP@50, respectively. The dual
backbone provides a framework for multi-scale feature learning, while
the RFDAP module enhances fine-grained details. Together, they com-
plement each other, enriching feature expression and significantly
boosting FP-DETR’s ability to recognize and classify targets under
diverse conditions.

4.5.2. Dual backbone ablation experiment

As shown in Table 6, compared with FasterNet, the serial version of
Vision Mamba achieves 2.9% higher precision and 2.61% higher F1
score, with only 1.5 x 10° additional parameters. It also demonstrates
clear advantages over ConvNeXtV2, delivering 3.78% higher precision
and 3.92% higher mAP@50 with fewer parameters, as well as over

Table 5
Key block ablation experiments.

RT-DETR Dual-Backbone RFDAP Precision (%) F1 Score mAP@50
v 96.58 96.66 96.53
v v 97.49 97.71 95.71
v v 97.72 97.75 96.81
v v v 98.9 97.88 96.92
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EfficientViT (+5.5% precision and + 5.57% F1 score) and Swin Trans-
former (+3.6% precision with 11.72 x 10° fewer parameters).

In parallel deployment, Vision Mamba achieves 98.9% precision,
97.88% F1 score, and 96.92% mAP@50. Compared with its serial
version, precision decreases slightly by 0.1%, but F1 score improves by
0.48%, while parameters are reduced by 9.92 x 10°, leaving only 37.3%
of the serial version. This balance highlights the parallel version’s suit-
ability for lightweight and high-precision requirements in real-time edge
device detection.

4.6. Onsite experiment validation for the lightweight model of pig body
temperature detection

To evaluate the practical efficiency of FP-DETR in real-world appli-
cations, we deployed it on an inspection robot within the pig house. The
robot integrates a visible-infrared dual-mode camera, a lifting mecha-
nism, a 360° rotating pan-tilt unit, a touchscreen interface, and an
automated obstacle-avoidance mobile chassis. Its overall structure is
illustrated in Fig. 16.

To compare the performance of the robot system, a handheld thermal
imaging camera (Fotric Model 287-L20, Fotric, Texas, USA; temperature
range: 40°C-150°C, accuracy: +2°C) was used for visual data collection.
The measurements were taken under the same conditions as the in-
spection robot, including position, height (1.5 m), angle (30°), distance
(1 m), and emissivity (0.98), to ensure the results were directly com-
parable, the selection of components and the corresponding technical
specifications for each part of the inspection robot are presented in
Table 7.

The experimental validation was conducted on May 30, 2025, at
Hongsheng Building Science Research Institute, Harbin, China (Fig. 17).

The pig house is divided into four separate pens, each with a different
number of pigs, totaling 17 pigs. The data collection period was from
1:30 pm (after feeding) to 4:30 pm (before feeding).

The pig body temperature measurements obtained by the FP-
DETR-deployed inspection robot were compared with manual mea-
surements taken using an infrared thermal camera (Fotric Model 287-
L20, Fotric, Texas, USA; temperature range: 40°C-150°C, accuracy:
+2°C). Processing times for 17 pigs were recorded using the system’s
built-in clock. The automated method required 56.5 s per pig (0.94 min),
whereas manual measurements took 98.8 s per pig (1.65 min), repre-
senting a 42.9% reduction in time per animal. Extrapolated to a 100-pig
farm, this improvement translates into a time saving of 70.5 min per full
inspection cycle, reducing the total inspection duration from 2.75 h to
1.57 h, while maintaining accuracy.

As shown in Fig. 18, the Bland-Altman analysis indicates that tem-
perature differences are tightly clustered around the mean bias of
0.16°C, with 95% limits of agreement (LoA) ranging from -0.44°C to
0.76°C (span: 1.20°C), demonstrating an acceptable level of agreement
in practice. The difference data points are distributed symmetrically on
both sides of the mean line, without any evident trend of systematic
deviation. Within these limits, approximately 93% of the data points
(16/17) fall inside the interval, with only a single point slightly above
the upper limit, further confirming the high reliability of the measure-
ments. Notably, the distribution of differences shows no association with
temperature magnitude, indicating that the agreement between the two
methods remains consistent across the full measurement range.

In order to check the robustness of the FP-DETR model in real farm
conditions, real-time deployment tests were carried out. The results
show that the model keeps stable accuracy, with variations mostly
within 2-5%, which means an absolute error of about 0.8-1.9°C when
compared with a reference body temperature of 38°C. Such errors
mainly appeared in extreme situations, such as heavy rain that raised
humidity and lowered ambient temperature. For efficiency, the frame
rate was between 50 and 60 FPS. Lower frame rates were seen mainly at
device startup and after long continuous use (more than three hours).
During normal operation, the system stayed stable at 55-60 FPS, which
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Table 6

Different backbone replacement ablation experiments.
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Model

Parallel

Serial

Precision (%)

F1Score (%) mAP@50(%) Parameters/10°

FasterNet
ConvNeXtV2
EfficientViT

Swin Transformer

Vision Mamba (ours)

Y/

< 0 0 <

9%
v 9.6
95.12
96.8
93.4
92.2
95.3
97.2
98.9
99

< 0 <<

95.27 92.66 4.4
94 93.28 10.8
92.81 93 5.7
94.76 96.3 12.6
92.31 92.45 6.1
93.11 92.86 11
94.16 94.21 17.62
96.44 96.13 36.61
97.88 96.92 5.9
97.4 97.72 15.82

Dual Mode
Camera

3D
Lidar

Light

il

BHEAEXR
BARS % & EA

Rotating
platform

Camera

Processor

Fig. 16. The appearance of the inspection robot.

Table 7
Hardware parameters of the experimental platform.
Component Version Manufacturer Parameter
3D Lidar VLP-16 Velodyne, San 16-line,100 m detection
Jose, CA, USA range;300,000 points per
second
2D Lidar MS200 ORADAR, Single line; 12 m measurement
Shenzhen, China range;4500 points per second
Dual-mode UD36833B Hikvision, 256 x 128; 28 FPS
camera Hangzhou, China
Depth Astras Orbbec, 640 x 480: 30 FPS
Camera Shenzhen, China
IMU CMP10A Yahboom, Output frequency:0.2-200 Hz;
Shenzhen, China 10 axis
Processor Jetson- NVIDIA, Santa 4 Core A57: 472 GFLOPs
Nano Clara,CA,USA
Motion TR500 HelloMaker, Crawler-type;0-1.2 m/s
chassis Shenzhen, China running speed

is suitable for reliable real-time monitoring.

In summary, the testing device shows high-precision temperature
extraction capabilities with robust measurement agreement, indicating
strong practical ability.

4.7. Current limitations and future development

Although FP-DETR shows excellent detection performance on the
current dataset, several potential aspects for future research and
improvement still exist. First, due to objective limitations, the pig breeds
available in experimental farms are limited. Consequently, model vali-
dation is primarily concentrated on data from a single breed, repre-
senting an unavoidable limitation at this stage. Future access to broader
farm and pig species resources would be helpful for further examining
the model’s ability to generalize across different species and growth
stages.

Moreover, although the model has achieved a good balance between
accuracy and efficiency, its deployment on edge devices remains con-
strained by hardware limitations. Future efforts should focus on further
optimization through lightweight network design, model compression,
and hardware-software co-optimization to ensure stable real-time
operation in practical farming environments. In addition, exploring
the integration of the model into microcontroller units (MCUs) to
develop truly lightweight detection devices with low power consump-
tion, low cost, and high portability could better meet the practical needs
of on-site farming applications.

5. Conclusion

(1) FP-DETR showed higher performance than other models,
achieving higher precision (99.07 + 0.50%) than YOLOV9 (92.65
+ 0.52%), YOLOVS8 (94.78 + 0.40%) and Faster R-CNN (89.44 +
0.49%). It ran at higher FPS (67 + 10 FPS) than RT-DETR (41 + 6
FPS), while maintaining higher efficiency with smaller size
(16.79 £ 0.21 MB) and faster training time (8.79 + 0.28 h).

(2) The FP-DETR detection model meets the requirement of real-time
temperature extraction. The detection frame rate is 68 FPS, which
is higher than the general requirement for real-time detection
(25 ~ 30 FPS).

(3) The temperature extracted by the FP-DETR model is highly
consistent with the manual extraction results, which can effec-
tively replace the manual measurement. The R%, MAE and RMSE
of the extraction temperature were 0.957, 0.108 and 0.142,
respectively.

(4) The FP-DETR system achieved 43% faster detection (17 pigs in
16 min) while maintaining high accuracy (0.16°C MAE), with
93% of measurements falling within acceptable consistency
limits.
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Fig. 17. Data collection equipment. (a) Data collection process. (b) Visible light image. (c) Infrared images.
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