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A B S T R A C T

Pig body temperature is a critical indicator for health assessment of pigs, and can be detected automatically with 
machine vision-based models, due to their accuracy and effectiveness. However, it is hard to apply them onsite in 
large-scale pig farms. A primary issue lies in the absence of lightweight feature extraction models that can 
effectively address the problem of multimodal information fusion. To fill this gap, this study proposes FP-DETR 
(Frequency Parallel backbone DEtection TRansformer) by integrating parallel backbone and frequency-spatial 
domain multimodal fusion technology method into the DETR (DEtection TRansformer) object detection model 
to compress the model structure and enhance the model’s feature extraction capability. The proposed FP-DETR 
model achieves precision of 98.9% and recall of 96.88% with only 5.9 × 106 parameters and 8.8 h training time. 
Compared with the YOLOv12 model, FP-DETR improves detection speed by 35 FPS and accuracy by 6.3%. FP- 
DETR’s temperature extraction achieved performance with R2 of 0.957 and mean absolute error (MAE) of 0.108. 
In addition, equipment development and model integration have been completed, and an on-site experiment has 
been conducted, showing that the system is about 42.9% faster than manual. Therefore, the proposed model 
offers excellent performances of efficiency and accuracy as a promising solution for real-time onsite pig body 
surface temperature detection.

1. Introduction

With the continuous expansion of large-scale pig farming, increasing 
attention has been directed toward pig health (Tzanidakis, et al., 2021). 
Body temperature is one of the most important indicators reflecting the 
health status of pigs (Lu, et al., 2018). Many infectious diseases, such as 
respiratory infections (Opriessnig, et al., 2011), African swine fever 
(Salguero, 2020), and porcine reproductive and respiratory syndrome 
(Benjamin and Yik, 2019), etc., can cause abnormal fluctuations in body 
temperature. Therefore, the real-time and accurate measurement of pig 
body temperature is of great significance for the early diagnosis of dis
eases and the assessment of overall health (Zhang, et al., 2019).

Currently, rectal temperature is widely used as an indicator of pig 

health in commercial farming (Ramirez and Karriker, 2019). Tradi
tionally, rectal temperature is measured by inserting a mercury or 
electronic thermometer into the rectum (Cuthbertson, et al., 2019, 
Sellier, et al., 2014), which is both labor-intensive, time-consuming, and 
often causes stress in pigs, making it unsuitable for large-scale farms.

With the advancement of digital sensing technologies, implantable 
biosensors have been explored for temperature measurement. In dairy 
cows, sensor readings showed a strong correlation with vaginal tem
perature (r = 0.85) under heat stress conditions (Chung, et al., 2020). In 
pigs, subcutaneous temperature was about 1◦C lower than rectal values 
but still demonstrated a significant linear relationship (r = 0.88, P <
0.0001) (Lohse, et al., 2010). These findings confirm that implantable 
devices can effectively measure body temperature in animals. However, 
their high cost and the stress caused by implantation limit their 
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practicality in large-scale commercial farming.
In the field of smart agriculture, prior studies have approached dig

ital farming from diverse perspectives. Pratama, et al. (2023) advanced 
livestock management through a virtual fencing system built on wireless 
sensor networks and the Haversine method, highlighting spatial moni
toring of animal herds, whereas the present study focuses on physio
logical monitoring via body temperature detection. Hossain and 
Chowdhury (2024) introduced AgroSense, an internet of things (IoT)- 
based platform designed to improve crop selection and decision-making, 
representing a direction toward digitalized agronomy, while this work 
emphasizes animal health indicators in farming practice. Jumi (2024)
concentrated on goat farming by designing an IoT-enabled breeding 
house, with particular attention to environmental variables such as 
humidity and gases, in contrast to the current emphasis on body surface 
temperature as a direct signal of health status. Shofura, et al. (2021)
applied artificial neural networks to the classification of monthly 
weather conditions, showing how artificial intelligence (AI) can improve 
meteorological forecasting, while here advanced detection transformers 
are applied to livestock disease early warning. Galina, et al. (2022) in
tegrated Sonic Bloom acoustic stimulation with IoT technology to 
enhance crop growth, focusing on plant productivity, whereas this study 
addresses animal health monitoring in real farm environments. Listia
ningsih and Susanto (2023) proposed frameworks for smart environ
ments and forest cities, emphasizing ecological sustainability at the 
urban scale, which stands apart from livestock-focused health moni
toring at the farm level. Taken together, these works illustrate the di
versity of approaches within smart agriculture, while the present 
research distinguishes itself by combining infrared thermography with a 
frequency–spatial fusion transformer (FP-DETR) for robust, real-time 
detection of pig body temperature.

In recent years, infrared thermography (IRT) has gained increasing 
attention as a non-contact method for measuring animal surface tem
perature. With its advantages such as convenience, speed, absence of 
stress responses, and the ability to automate body temperature inspec
tion (Bagavathiappan, et al., 2013), the IRT-based method has been paid 
more and more attention (Zhang, et al., 2019), especially in inflamma
tion detection (Whittaker, et al., 2023), ovulation monitoring (Marquez, 
et al., 2019), abnormal behavior recognition and growth assessment 
(Sasaki, et al., 2016).

In particular, infrared thermography combined with deep learning 
algorithms has led to significant advances in livestock health moni
toring. For example, R2Faster R-CNN (Lu, et al., 2021) and IT-PETE 

(Xiao, et al., 2021) have been applied to tasks such as automatic 
recognition of dairy cow mastitis (Zhang, et al., 2020, nipple detection, 
and pig’s ear detection (Zhou et al., 2017) and temperature extraction. 
These studies achieved good detection accuracies over 80.41%, time 
efficiency of 0.19 s and body temperature extraction error of 2.29℃.

Although existing models perform well, they are constrained to 
spatial domain analysis and struggle to suppress environmental noise 
such as low-frequency heat sources and high-frequency equipment 
interference. Relying on pixel-level information makes these models 
highly sensitive to lighting and background variations, reducing their 
effectiveness in complex farm environments. In addition, reproducibility 
across different experimental setups is often limited, which further re
stricts their reliability and hinders stable deployment in large-scale, 
noisy farming scenarios.

To overcome these limitations, frequency-domain information and a 
parallel backbone structure are introduced into the DETR (DEtection 
TRansformer), a target detection method that directly captures image 
features through the self-attention mechanism of transformer, to 
enhance its performance. Specifically, a parallel architecture of Vision 
Mamba and CNN is adopted to achieve cross-regional correlation of 
global features through global self-attention modeling and local texture 
detail extraction, while frequency-domain information is incorporated 
to decompose high and low-frequency components and construct fre
quency features. By integrating the Spatial Feature Adaptation (SFA) 
module and Band Feature Modulation (BFM) module, the proposed FP- 
DETR (Frequency Parallel backbone DEtection TRansformer) method 
realizes accurate separation of effective signals from environmental 
noise. In recently, Frequency Dynamic Convolution Chen, et al. (2025)
further demonstrates the value of frequency-domain analysis, high
lighting the necessity of multimodal fusion for advancing feature 
learning.

In a previous study by our research group, the YOLOv5s-BiFPN 
model was established, developed using infrared thermal imaging to 
estimate the temperature of six body surface regions in pigs (forehead, 
eyes, nose, ear roots, back, and anus) (Xie, et al., 2023). Strong corre
lations were observed between rectal temperature and the temperatures 
at the ear roots and forehead. Therefore, the ear roots and forehead were 
selected as the regions of interest (RoIs) for body surface temperature 
detection.

On this basis, the present study introduces frequency-domain infor
mation to enhance image features, separate environmental noise from 
physiological signals, and integrate a lightweight parallel backbone with 
additional methods. This design significantly reduces computational 
complexity while improving the accuracy of feature extraction, thereby 
enabling robust and efficient pig body temperature detection in real 
farm environments.

The main contributions of this work are as follows: 

(1). A parallel dual-backbone architecture was designed to achieve 
efficient lightweight feature extraction.

(2). A frequency–spatial fusion strategy was introduced, enhancing 
feature representation and suppressing environmental noise.

(3). Improved image segmentation and fusion algorithms were 
developed, enabling high-precision contour recognition while 
reducing computational cost.

(4). The FP-DETR model was successfully deployed on an inspection 
robot and validated under real farm conditions, demonstrating its 
practical feasibility for large-scale pig farming.

2. Materials and methods

2.1. Description of the pig house

The experimental data were collected in winter (February 22 to 
March 26, 2024) and summer (June 22 to July 31, 2023; July 28 to 
August 9, 2024) from two locations: Jingzhe Pig Farm in the Yabuli 

Nomenclature

ASPP Atrous Spatial Pyramid Pooling
Conv Convolution
ER Ear Root
FH Forehead
f1b(x,y) Base layer of the infrared image
f1d(x,y) Detail layer of the infrared image
f2b(x,y) Base layer of the visible light image
f2d(x,y) Detail layer of the visible light image
fd(x,y) Layers of detail after initial fusion
FPS Frame per second, frame/s
MAE Mean absolute error
mAP Mean Average Precision, %
P Precision, %
R Recall, %
RC Rectum
R2 Determination coefficient
RMSE Root mean square error
RoI Region of interest
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Forestry Bureau, China (Fig. 1(a)), and HongzhuKangyuan Pig Farm in 
Harbin City, China (Fig. 1(b)).

At Jingzhe Pig Farm, the pig house was designed with a sloped roof, 
insulated walls, and adjustable sunshade windows at the top, along with 
a 1.5 m diameter exhaust fan installed on the outer wall near the 
entrance. Feeding troughs (2 m × 0.8 m) were placed every five meters 
along the walkways, and the floor was covered with thick bedding 
composed of rice husks, rice bran, and corn stalks.

In contrast, the pig house at HongzhuKangyuan Pig Farm had a 
semicircular vaulted structure with a concrete slatted floor, and its roof 
was covered with a blue waterproof film to help regulate temperature 
and humidity. Two exhaust fans (1 m and 1.5 m in diameter) were 
mounted on the outer wall, and an electronic feeding station was 
installed inside, with pigs fed twice daily.

2.2. Data collection

Data were collected from 139 ternary hybrid pigs (Duroc × [Land
race × Large White]), aged 240–270 days, with an average weight of 
230 kg in summer and 210 kg in winter. Pigs were fed daily at 8:00 and 
15:00, and measurements were taken before and after feeding, specif
ically at 6:00–7:00, 9:00–10:00, and 16:00–17:00. Collected data 
included skin temperature, rectal temperature, and environmental 
conditions within the pig houses.

Rectal temperature was measured using a specialized livestock 
thermometer (Nierni, China; range 20–42.99◦C; accuracy ± 0.5◦C). The 
thermometer was inserted 10 cm into the rectum and held for 5–7 s; each 
measurement was repeated twice, and the mean value was recorded as 
the rectal temperature. Ambient temperature and humidity were 
measured using a handheld meter (TA622A, TASI). Body surface tem
perature was measured with a thermal imaging camera (Fotric Model 
287-L20, Fotric, Texas, USA; range 40–150◦C; accuracy ± 2◦C), with 
emissivity set to 0.98 and the distance fixed at 1 m, focusing on the ear 
root and forehead regions.

According to our previous study, the maximum temperature from the 
ear root and forehead has the highest Pearson’s correlation coefficient 
with porcine rectal temperature (ER: 0.6859, FH: 0.6609), and the 
maximum temperature is effective in preventing ambient low- 
temperature interference. So they are selected as the RoIs for pig’s 
body surface temperature detection (Xie, et al., 2023). The collected 
temperatures on RoIs are shown in Table 1.

2.3. Dataset division

The dataset includes a total of 1688 sets of data, each of which 
consists of visible light images and corresponding thermal infrared im
ages, with a total of 3376 images. Each image is labeled with Labelme 
for the ear root and the forehead area. These images are divided into 
training set (2704 images), validation set (338 images) and test set (338 
images) at a ratio of 8:1:1, and the thermal infrared images correspond 
to the visible light images. In order to ensure the fairness and general
ization of the model training, the dataset was randomly divided ac
cording to this ratio rather than being split sequentially. To guarantee 
transparency and reproducibility of the randomization, a fixed random 
seed was used during the partitioning process.

3. FP-DETR model development

3.1. Workflow of FP-DETR

The lightweight network structure is integrated with the temperature 
extraction process to improve both the efficiency and accuracy of 
detection. The overall workflow of FP-DETR is illustrated in Fig. 2. 

(1) Image input: Infrared thermal images and corresponding visible 
light images are used as inputs.

Fig. 1. Pictures of pig houses inside and outside: a. Jingzhe pig farm. b. HongzhuKangyuan pig farm.
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(2) Image segmentation: Key features on the pig’s body surface are 
extracted from the infrared images, which are then used to 
segment the image.

(3) Image Fusion: The pig’s outline is fused using a trained model. 
Temperature data from the infrared image are combined with 
details from the visible light image to generate a fused image 
containing both temperature and coordinate information.

(4) Temperature extraction: The fused image is passed into the RoI 
detection module to identify the regions of interest. Based on 
these regions, the maximum temperature values are extracted 
from the fused image and recorded.

3.2. Image segmentation

3.2.1. Image registration
The visible light image captured by the thermal imaging camera has 

a resolution of 600 × 1200, while the infrared image has a resolution of 
512 × 384, resulting in differences in both resolution and visual 
appearance (Fig. 3). Such discrepancies may affect the accuracy of ob
ject recognition.

Therefore, in this study, the AKAZE method was applied to align the 
contours of visible and infrared images at the key regions of the pig’s 
body. The main steps are as follows: 

(1) Grayscale conversion: Both infrared and visible light images were 
converted to grayscale to reduce computational complexity.

(2) Scale space construction: A scale space was generated through 
nonlinear diffusion filtering, and key points were detected using a 
regional method. These key points correspond to local extrema in 
the image, representing pixels with maximum or minimum gray 
values within their neighborhoods.

(3) Binary descriptor generation: For each pixel, a binary descriptor 
was created based on the gradient directions of its neighboring 
pixels relative to a threshold direction. The value was set to 1 if 
the gradient direction matched the threshold direction and 
0 otherwise.

(4) M-LDB feature description: The Modified Local Difference Binary 
(M-LDB) operator was used to describe the area surrounding each 
feature point, as shown in Eq. (1). This operator generates a bi
nary code by comparing the intensity of neighboring pixels with 
that of the central pixel, thereby capturing local texture infor
mation effectively.

MLDB(i,j) =
∑N− 1

k=0
bk×2k (1) 

where (i,j) represents the pixel position, N is the length of the binary 

Table 1 
Experimental temperature statistics.

Area Summer Winter

Maximum (◦C) Minimum (◦C) Average (◦C) Maximum (◦C) Minimum (◦C) Average (◦C)

ER 40.4 29.4 36.8 39.8 25.7 36.6
FH 39.8 25.7 37.7 39.5 29.4 37.2
RC 39.7 37.5 38.5 39.7 37.5 38.5

Fig. 2. The overall workflow of FP-DETR.
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descriptor, and bk is the k-th position in the binary descriptor.
After the feature points were obtained, a transformation matrix was 

constructed using the Random Sample Consensus (RANSAC) algorithm 
to scale the visible light image and align it with the target region in the 
thermal infrared image as shown in Eq. (2). Subsequently, an external 
rectangular frame was generated based on the body surface contour 
identified in the thermal infrared image, and the corresponding region 
was extracted from the visible light image using this frame. 

⎡

⎣
x1
y1
1

⎤

⎦ =

⎡

⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤

⎦×

⎡

⎣
x
y
1

⎤

⎦ (2) 

where x and y are the pixel coordinates of the visible light image; x1 and 
y1 are the coordinates of the pixels in the visible light image after 
registration; h11(h22) is the horizontal (vertical) scaling factor; h12 (h21) 
is the horizontal (vertical) tilt factor; h13 (h23) is the horizontal (vertical) 
translation factor; h31 and h32 are perspective transformation factors; h33 
is the normalization factor, which is set to 1 in this paper; 1 in the matrix 

Fig. 3. Visible light image and corresponding infrared image.

Fig. 4. Image registration effect. (a) Before registration. (b) After registration.
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is used to introduce a point of the third dimension in the two- 
dimensional image transformation, so as to avoid the translation term 
in the image and reduce the computational complexity. The image 
registration effect is shown in Fig. 4.

3.2.2. Semantic segmentation
To automatically segment pig body contours and provide pixel-level 

key regions for temperature measurement from fused infrared and 
visible images, an improved DeepLabv3+ (Chen et al., 2018) semantic 
segmentation algorithm was developed to achieve both lightweight 
performance and high contour accuracy.

The enhanced DeepLabv3+ architecture achieves lightweight seg
mentation through three structural modifications: replacing the Xcep
tion backbone (Chollet, 2017) with MobileNetV4 (Qin et al., 2024), 
optimizing the dilation rates of atrous convolutions, and integrating 
CBAM (Woo et al., 2018) dual-attention modules at the encoder’s output 
layer.

As illustrated in Fig. 5 (adapted based on (Chen et al., 2018)), the 
segmentation model consists of four main components: an input layer, 
an encoder, a decoder, and a prediction layer. 

(1) Input layer

The input layer of the segmentation model takes as input a registered 
visible light image with a resolution of 512 × 384. To match the model’s 
input requirements, the image is resized to 512 × 512. 

(2) Encoder

In the encoder, the first deep convolutional neural network module 
(MobileNetV4) is used to perform feature extraction on the input pig 
image. Through the MobileNetV4 network, a high-level semantic feature 
map (32 × 32 × 320) and a low-level semantic feature map (128 × 128 
× 24) are obtained. The low-level semantic features are passed directly 
to the decoder, while the high-level semantic features are forwarded to 
the Atrous Spatial Pyramid Pooling (ASPP) module (Chen et al., 2018). 
By applying dilated convolutions with varying dilation rates, the ASPP 
module further enhances feature extraction, enabling the capture of 
more discriminative information.

MobileNetV4 (Qin et al., 2024). achieves fast and accurate vision 
modeling for mobile and edge devices through an efficient lightweight 
design that combines depthwise separable convolution and pointwise 
convolution. In this study, depthwise separable convolution was 

adopted to reduce computational complexity. Specifically, the input pig 
image is decomposed into three channels (R, G, and B), after which a 3 
× 3 convolution is independently applied to each channel, generating 
corresponding feature maps (Fig. 6).

Compared to traditional convolution, which uses a K × K kernel to 
process Din channels, the computation required to obtain a feature map 
with Dout channels is Din × Dout × K × K. Notably, the computation is 
reduced to Din × (Dout + K × K) in this paper, which significantly de
creases the computational cost and achieve a better lightweight model. 
At the same time, the 3 × 3 deep convolution with a step size of 2 has 
fewer parameters and computations. It reduces the amount of data 
processed by the subsequent layer, thus lowering the memory footprint 
and improving computational efficiency, as shown in Eq. (3). 

MobileMQA(X) = Concat(attention1,⋯⋯, attentionn)WO 

attentionj = Softmax
((

XWQj
)(

SR(X)WK
)
T

̅̅̅̅̅
dk

√

)
(
SR(X)WV ) (3) 

where SR represents the spatial downsampling performed by the deep 
convolution module with step size of 2, W is the weight matrix, Softmax 
is an activation function that maps the input value to the probability 
distribution between 0 and 1; dk is the dimension of the input vector; and 
Qj is the j-th transformed vector of the input.

The ASPP module consists of one standard convolution, three dilated 
convolutions with dilation rates of 12, 24, and 36, and one pooling layer, 
all operating in parallel. To minimize the feature loss, the outputs from 
these five parallel operations are combined and fused using the Concat 
module. Subsequently, the number of channels is adjusted through a 1 ×
1 convolution, after which the CBAM module is applied to enhance 
feature representation by integrating both channel and spatial attention, 
thereby improving the learning of pig-specific features.

CBAM(Woo et al., 2018) is a lightweight dual-attention mechanism 
that integrates a Channel Attention Module (CAM) and a Spatial 
Attention Module (SAM). It enhances the extraction of key features from 
the pig’s body by refining information at both the channel and spatial 
levels (Fig. 7 adapted from (Woo et al., 2018)). When combined with the 
ASPP module, CBAM further strengthens feature representation, 
ensuring that both multi-scale context and attention-guided details are 
effectively captured.

The CAM evaluates the relative importance of different feature 
channels and assigns corresponding weights, enabling the segmentation 
model to focus more effectively on channels that are critical for RoIs on 
the pig’s body surface relevant to temperature detection. The SAM 

Fig. 5. Structure of the semantic segmentation model.
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operates in the spatial domain, enhancing the recognition of contour 
features on the pig’s body surface and improving segmentation 
accuracy. 

(3) Decoder

The number of low-level semantic channels is first adjusted using a 1 
× 1 convolution to match the channel dimensions of the decoder output. 
The resulting features are then further fused with a 3 × 3 convolution. 
After the final upsampling and processing step, all aggregated features 

are passed into the prediction layer for output generation. 

(4) Output layer

The size of the upsampled feature map is adjusted so that the pre
diction output matches the resolution of the input image. Each pixel is 
then classified using the Softmax function, enabling automatic seg
mentation of the pig’s body.

Fig. 6. Depth-separable convolution. (a) Depthwise Convolution. (b) Pointwise Convolution.

Fig. 7. Structure of CBAM.

Fig. 8. Flow chart of infrared and visible light image fusion.
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3.3. Image fusion

Since infrared thermal images contain skin temperature information 
but have lower resolution and fewer details, while visible light images 
provide richer detail for accurate identification, image fusion was 
applied to enable precise temperature extraction (Fig. 8). The module 
takes as input a visible light image and its corresponding infrared image. 
Both images are decomposed into scale layers: the visible light base layer 
f1b(x,y), the visible light detail layer f1d(x,y), the infrared base layer f2b(x, 
y), and the infrared detail layer f2d(x,y). Different fusion strategies are 
then applied to the base and detail layers, respectively (Fig. 8). 

(1) The base layer and detail layer of the visible light image (f1b (X, Y) 
and f1d(X, Y)) and the base layer and detail layer of the infrared 
thermal infrared image (f2b (X, Y) and f2d(X, Y)) are obtained after 
decomposition using a mean filter (window size is 35).

(2) The base layer is obtained using the weighted average method to 
calculate the base layer fb(x,y) after the preliminary fusion. The 
detail layer is derived by calculating the Euler distance to obtain 
the fusion coefficient matrix ξ1(x,y) and ξ2(x,y). The preliminary 
fusion of the detail layer fd(x,y) is then obtained, as shown in Eq. 
(4).

fd(x, y) = ε1(x, y)fd
1 (x, y)+ fd

2 (x, y)ε2(x, y) (4) 

3.4. Temperature extraction

3.4.1. Detection model for the RoI on pig body surface
The body surface key temperature identification model is composed 

of five main components: Input, Backbone, Neck, Head and Output 
(Fig. 9). 

(1) Input layer

The input layer consists of fused images that have been pre-processed 
and normalized to 640 × 640 pixels. To standardize the inputs, partially 
registered images are resized to 640 × 640, ensuring stability and con
sistency in model processing. 

(2) Backbone

The backbone network is primarily responsible for multi-scale 
feature extraction from pig body surface images to ensure accurate 
detection. A parallel backbone architecture was introduced to capture 
contextual information through multi-path computation units, where 
Vision Mamba encodes global features via parallel self-attention mod
ules to establish cross-region correlations. At the same time, the network 
extracts local textures through nonlinear transformations while inte
grating global information, thereby achieving comprehensive surface 
sensing.

Regional Feature Discriminative Adaptive Processor (RFDAP): The 
RFDAP further refines this process and consists of three components 
(Fig. 10): frequency feature construction, spatial feature adaptation, and 
band feature modulation.

Frequency Feature Construction (FFC): The workflow for frequency 
feature construction is as follows: First, the input image data X ∈

RH×W×Cin is equally divided by channel dimension into n channel 

grouping data blocks X ∈ R
H×W×

Cin
n (i = 1,2,⋯n), each channel-grouped 

data block Xi carries information of a specific image channel. Then, Xi is 
transformed from the spatial domain to the frequency domain by 
Discrete Fourier Transform (DFT) to obtain the frequency domain 
feature representation F(Xi). DFT and the inverse DFT (iDFT) are 
calculated as shown in Eqs. (5) and (6). 

F(k, l) =
1

MN
∑M− 1

m=0

∑N− 1

n=0
f(m, n) × e

− j2π

(
mk
M +

nl
N

)

(5) 

f(m, n) =
∑M− 1

k=0

∑N− 1

l=0

F(k, l) × e
− j2π

(
mk
M +

nl
N

)

(6) 

where f (m, n) is the discrete signal in the spatial domain (e.g., image 
pixel values); F (k, l) is the discrete spectrum in the frequency domain; M 
and N are the height and width of the signal; j is an imaginary unit; and 

e
j2π

(
mk
M +

nl
N

)

is the frequency-domain basis function characterizing the 
phase and amplitude of the frequency components.

Second, the frequency domain data F(Xi) is sorted by frequency and 
processed through the Fully-Connected (FC) layer to generate the 

Fig. 9. Structure of the detection model for the RoI on pig body surface.
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feature representation FC(sort(F(Xi))), and then processed by the Sig
moid function to obtain the modulation factor fi = σ(FC(sort(F(Xi) ) ) ).

The frequency domain data is transferred back to the spatial domain 
by the inverse iDFT to obtain Wi (Wi = F− 1(F(Xi))). Eventually, the 
group Wi are summarized by Hadamard product with the corresponding 
modulation coefficients fi, and the output feature F1 =

∑n
i=1fi⋅Wi s ob

tained. The Hadamard product formula is shown in Eq. (7). 
⎛

⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

an1 ⋯ ann

⎞

⎠×

⎛

⎝
b11 ⋯ b1n
⋮ ⋱ ⋮

bn1 ⋯ bnn

⎞

⎠ =

⎛

⎝
a11b11 ⋯ a1nb1n

⋮ ⋱ ⋮
an1bn1 ⋯ annbnn

⎞

⎠ (7) 

Spatial Feature Adaptation (SFA): The spatial feature adaptation 
process (Fig. 11 (adapted from (Chen et al., 2025))) is designed to 
strengthen FP-DETR’s capacity to capture features from the input data 
by accurately modulating weights, thereby improving the model’s 

adaptability and representational power.
In this study, a 1-D convolution is applied to the local channel to 

effectively capture local channel information while significantly 
reducing computational cost. To address the limited utilization of global 
feature information in local branches, additional global channels are 
introduced to aggregate global context, followed by predicting a mod
ulation value across the input channel, output channel, and kernel 
dimensions.

Band Feature Modulation (BFM): Although the weights generated by 
the Frequency Feature Construction (FFC) and Spatial Feature Adapta
tion (SFA) modules enhance representation, they still maintain spatial 
invariance at the global level. To address this limitation, BFM is incor
porated to achieve targeted weight conversion for different frequency 
components. Specifically, feature frequency decomposition is performed 
by applying a frequency-domain transform to the input feature map X, 

Fig. 10. Regional feature discriminative adaptive processor.

Fig. 11. Structure of spatial feature adaptation.
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and binary masks Mb (with b = 1, ...., B, and B = 3) are used to separate it 
into different frequency bands Xb (Xb = F− 1(Mb ⊙ F(X))), where F and 
F− 1 are the DFT and the iDFT); then the frequency feature modulation is 
performed, and the spatially variable modulation coefficients Ab(Ab =

Sigmoid(Conv 2 D(Xb))). Each frequency band is then modulated by 
generating spatially varying coefficients Ab (Ab =

Sigmoid(Conv 2 D(Xb))) through a convolutional layer followed by a 
Sigmoid activation. Finally, the modulated frequency bands are fused 

through element-wise summation to obtain the output feature Y 
(

Y =

∑B− 1
b=0 (Ab ⊙ Xb)

)
, enabling FP-DETR to adaptively capture the complex 

spatial–frequency structure of the image and improve the representation 
of both high- and low-frequency features. 

(3) Neck

The Adaptive Interaction Feature Integration (AIFI) module is 
designed to further enhance feature representations by fully leveraging 
global information (Fig. 12). The input feature map has dimensions (B, 
C, H, W), where B denotes the batch size, C the number of channels, and 
H and W the spatial height and width, respectively.

First, the Conv1-D and Embedding modules are applied to the input 
feature map, reducing the number of channels by half and producing a 
feature map with dimensions (B, C/2, H, W). Next, the spatial di
mensions H and W are flattened and reshaped into (B, C/2, H × W) to 
prepare for subsequent processing. Positional information is then 
incorporated using sine–cosine embedding, which enables FP-DETR to 
accurately capture the spatial positions of features. The calculation 
process is shown in Eqs. (8) and (9). 

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)

(8) 

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)

(9) 

where PE is the positional encoding matrix used to give positional in
formation to the elements of the model sequence; pos means the index of 
the element’s position in the sequence (from 0), i is the index of the 
encoding vector dimension (also from 0, 2i, (2i + 1) corresponds to the 
even and odd dimensions, respectively); dmodel refers to the hidden layer 
dimension of the model; 10,000 is a fixed constant used to scale the 
exponential function and modulate the variation of the encoding period.

After that, the Multi-Head Attention module is applied to capture 
long-range dependencies and contextual relationships among features, 
followed by a Feed Forward Neural Network (FFN) that further refines 
the feature representation through nonlinear transformations. Finally, 

the enhanced features are projected back to the input dimensions using a 
Linear layer and classified with the Softmax function. 

(4) Head

The input data are first processed by the Uncertainty-Minimum 
Query Selection Module (Zhao et al., 2024), which filters out 
non-essential information. The refined data are then concatenated and 
activated to determine the TOP-K indices for location selection. 

(5) Output

The output layer is responsible for predicting both the target’s po
sition (bounding box) and its classification (confidence score) based on 
the results from the Head layer. The category score map (Sclass) is 
generated according to Eq. (10). Regression is then applied to produce 
the bounding box parameters, including the center coordinates (xc, yc), 
confidence score p, width w and height h as defined in Eqs. (11)–(15). 

Sclass(x, y, c) = Softmax(f1(x) × f2(x) + bclass(c))

f1(x) =
∑k

i=1

∑k

j=1

∑k

d=1
wclass(i, j, d, c)

(10) 

f2(x) = FNeck(x + i, y + j, d)

xc = σ
(∑k

i=1

∑k

j=1

∑CNeck

d=1
wx(i, j, d) × FNeck(x + i, y + j, d) + bx

) (11) 

yc = σ
(
∑k

i=1

∑k

j=1

∑CNeck

d=1
wy(i, j, d) × FNeck(x + i, y + j, d) + by

)

(12) 

p = σ
(
∑k

i=1

∑k

j=1

∑CNeck

d=1
wp(i, j, d) × FNeck(x + i, y + j, d) + bp

)

(13) 

w = e
∑k

i=1

∑k
j=1

∑CNeck
d=1

wc(i,j,d)×FNeck(x+i,y+j,d)+bw (14) 

h = e
∑k

i=1

∑k
j=1

∑CNeck
d=1

wh(i,j,d)×FNeck(x+i,y+j,d)+bh (15) 

where σ represents Sigmoid activation function to limit the output be
tween 0 and 1; and ex is used to keep width and height at positive values.

Finally, the model outputs the coordinates (xc, yc, w, h) of the 
bounding box and the confidence score p for each object in the image.

3.4.2. Temperature extraction
The temperature extraction is divided into three parts: (1) the fused 

image is fed into the RoI detection module to obtain the horizontal and 
vertical coordinates of the bounding box; (2) all temperature values 
within the defined region are extracted from the fused image; (3) the 

Fig. 12. Structure of AIFI, which integrates a convolution model with multi-head attention from a typical transformer model.
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maximum temperature within the RoI is selected to represent the pig’s 
body surface temperature.

3.5. Model evaluation indicators

Precision (P), Recall (R), FPS, mAP@50, F1 Score and calculations 
volume of Parameters are used to evaluate the detection model perfor
mances as shown in Eqs. (16)–(21), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), R-Square (R2), Confidence Interval (CI) 
(95%) and t (p-value) are used to evaluate the accuracy of temperature 
extraction as shown in Eqs. (22)–(26). 

P =
TP

TP + FP
(16) 

R =
TP

TP − FN
× 100% (17) 

FPS =
1
pt

(18) 

Confidence = Pr(Object) × IoUtruth
pred (19) 

F1Score =
2 × TP

2 × TP + FP + FN
(20) 

mAP@50 =

∑C
i=1APi

C
(21) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(22) 

MAE =
1
n
∑n

i=1
|(yi − ŷi) | (23) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (24) 

t =
d
sd̅̅
n

√
(25) 

CI =
(

d − tα
2
×

sd
̅̅̅
n

√ , d+ tα
2
×

sd
̅̅̅
n

√ ,

)

(26) 

where TP is the number of targets in the key areas that are correctly 
detected in the pig image; FP is the number of targets that identify errors 
in critical areas; FN is the number of targets that are identified as false 
but are true; yi and ŷi are the i-th true and predicted values; n is the 
number of image test sets; y is the sample mean; pt is an abbreviation for 
Processing time per frame, which is the time it takes for the model to 
detect each frame of image; Pr(Object) is the probability of the existence 
of the object in the bounding box, if there is an object, Pr(Object) = 1, 
otherwise Pr(Object) = 0; IoU is the intersection ratio of the real box 
(ground truth) and the predicted box (predicted IoU is the intersection 
ratio of real box (ground truth) and predicted box (predicted box); C is 
the total number of categories; APi represents the AP value of the i-th 
category; d is the mean of the differences; sd is the standard deviation of 
the differences; tα/2 is is the t-distribution critical value for a given sig
nificance level α.

Fig. 13. Visualization of the detection and segmentation model. (a) Original Backbone. (b) Vision-Mamba Backbone. (c) Parallel backbone. (d) Normal. (e) Bright 
light. (f) Face masking. (g) Top view.
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4. Results and discussion

4.1. Performance analysis of the detection and segmentation model

This part systematically illustrates the differences in feature extrac
tion across architectures through visual analysis of feature heatmaps 
(Fig. 13(a)–(c)). The traditional backbone (a) exhibits localized recep
tive field characteristics, with activations concentrated on specific re
gions of the face, such as the ear and forehead, while its capacity to 
model cross-regional correlations is markedly limited. By contrast, the 
Vision Mamba architecture (b) presents a more globally distributed 
activation pattern, indicating its ability to establish long-range de
pendencies across regions through a bidirectional state space modeling 
mechanism. Its responses not only extend over a broader spatial range 
but also display superior spatial continuity, highlighting the advantages 
of state space models in capturing global contextual information.

The proposed parallel hybrid architecture (c) integrates the strengths 
of both approaches. Compared with a single traditional backbone, it 
preserves local feature extraction while substantially broadening the 
spatial coverage of activations; compared with Vision Mamba alone, it 
enhances activation intensity in critical regions. Traditional backbones 
excel at capturing fine-grained local details through layered receptive 

fields, whereas Vision Mamba establishes semantic associations across 
distant regions through global modeling. Their combination produces 
complementary effects across multiple scales, yielding feature repre
sentations that remain sensitive to local detail while providing global 
contextual understanding, which aligns with the expected outcomes of 
the experiment.

The detection results for Fig. 13(d–g) demonstrate FP-DETR ’s per
formance under various conditions, with detailed analysis provided for 
(d) normal light, (e) bright light, (f) face masking, and (g) top view 
scenarios.

In the normal light condition (Fig. 13(d)), FP-DETR successfully 
identifies the RoI with a high confidence of 0.91. This result benefits 
from uniform lighting, clear image quality, and well-defined facial fea
tures, such as contours and textures, which closely match the training 
data. Under such conditions, the model can achieve stable recognition 
with high confidence.

In the bright light condition (Fig. 13(e)), the confidence decreases to 
0.75, though it still remains reliable. The main reason for this reduction 
is local overexposure and reflections caused by strong illumination, 
which obscure critical features such as the eyes and mouth. Further
more, changes in lighting alter the image’s color distribution, making it 
harder for FP-DETR to extract sufficient discriminative features, thus 

Fig. 14. Visualization of the segmentation model. (a) Foreground. (b) Background. (c) Segmentation result. (d) Comparison of manual and model. In the upper 
dashed box, (a), (b), and (c) correspond to the 1st, 2nd, and 3rd column figures (foreground, background, and the result) respectively; (d) in the lower orange box 
corresponds to all figures in this area, showing the three-group comparison (original image, manual segment and segmentation result of the proposed method) for 
pigs from different views.
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lowering the confidence slightly.
For the face masking condition (Fig. 13(f)), the model reaches a 

confidence of 0.81. Occlusion by dirt or padding directly covers some 
facial features, leaving FP-DETR to rely on visible regions like the eyes 
and forehead. While this increases recognition uncertainty, the combi
nation of local and global cues still allows for reasonably accurate pre
dictions, though with lower confidence than in normal conditions.

In the top-view condition (Fig. 13(g)), FP-DETR achieves a confi
dence of 0.82. Changes in perspective modify the geometric structure of 
the face, causing some key features to become distorted or partially 
invisible. This creates abnormal proportions that complicate detection. 
Nevertheless, by leveraging stable features such as ear positions and 
their relative alignment with the body, FP-DETR adapts effectively to 
these spatial changes, maintaining robust performance across varying 
viewpoints.

The effects of the improved DeepLabv3+ model on foreground (a), 
background (b), and final segmentation results (c) are presented in 
Fig. 14(a–c). The highlighted regions represent the key feature areas 
identified by FP-DETR.

For foreground segmentation (Fig. 14(a)), the improved model 
shows a clear increase in highlighted regions, such as the more distinct 
left front hoof, capturing a greater number of feature points. This 
enhancement allows more accurate localization of pig body contours 
and internal feature details, thereby improving recognition accuracy.

In background segmentation (Fig. 14(b)), the model demonstrates 
better contour extraction, successfully identifying fine structures such as 
the ears and front paws. This improves detailed feature capture and 
contributes to more accurate body contour delineation.

For the final segmentation results (Fig. 14(c)), the pig’s overall body 
contour appears smoother, with highlighted areas concentrated on the 
body region, reducing background misclassification. These results 
confirm that FP-DETR significantly improves the extraction and repre
sentation of pig body surface features, ensuring more precise segmen
tation for downstream temperature detection.

Across the three test samples (Fig. 14(d)), the segmentation results of 
the proposed model show high consistency with manual annotations. 
The calculated Intersection over Union (IoU) values were 0.914, 0.920, 
and 0.849, with an average of 0.894. This indicates that nearly 90% of 
the segmented regions overlap with expert annotations, demonstrating 
strong reliability. The best performance (IoU = 0.920) was observed in 
relatively simple contours, while the lowest value (IoU = 0.849) 
occurred in more complex structures with sharp edges. A closer in
spection reveals that discrepancies mainly appear along fine boundaries, 
such as the tips of ears and abrupt contour transitions, where manual 
annotations capture subtle edges with higher precision. Despite these 
minor differences, the model maintains smooth and coherent contours, 
achieving segmentation quality that is comparable to human annotation 
and sufficient for reliable temperature extraction tasks.

In summary, FP-DETR shows stable recognition performance under 
different lighting conditions (normal, strong light), facial occlusion, and 
top-down view angles. Under normal lighting (Fig. 13(d)), FP-DETR 
achieves a confidence level of 0.91, due to uniform lighting and clear 
facial features; under strong light (Fig. 13(e)) and occlusion (Fig. 13(f)) 
conditions, the confidence level remains above 0.75, indicating that FP- 
DETR has a certain degree of robustness to local feature loss and lighting 
interference. The confidence level of 0.82 under a top view (Fig. 13(g)) 
further verifies FP-DETR ’s adaptability to different angle changes.

The improved Deeplabv3+ model performs exceptionally well in 
image segmentation tasks: foreground segmentation (Fig. 14(a)) 
significantly improves the ability to capture key feature points (such as 
the left front hoof); background segmentation (Fig. 14(b)) optimizes 
contour recognition accuracy (such as ears and front paws); the final 
result (Fig. 14(c)) presents a smoother pig body contour segmentation 
with reduced false detection rates. Experiments have proven that FP- 
DETR effectively improves feature extraction accuracy and robustness 
in complex scenes by integrating frequency domain and spatial domain 

information.

4.2. Comparation with other models

In testing the models, this study conducted five repeated experi
ments, where each training was performed under exactly the same 
hardware and software environment. The final results were subjected to 
significance testing, and the results are shown in Table 2.

As shown in Table 2, the FP-DETR model achieves 99.07% precision 
and 96.75 ± 0.48% recall with (5.9 ± 0.07) × 106 parameters and 8.79 
± 0.28 hours training time. Compared with Faster R-CNN and YOLOv8, 
FP-DETR achieves an overall improvement in parameters, FPS, and ac
curacy, with a 91.8% and 7.37% reduction in parameters, a 50 FPS and 
34 FPS increase in frame rate, and a 9.63% and 4.29% increase in 
precision.

Compared with YOLOv9, YOLOv12, and RT-DETR, despite the pa
rameters increase of 11.72%, 1.03%, and 39.72%, the frame rate is 
significantly improved by 40 FPS, 38 FPS, and 26 FPS, and the precision 
is improved by 6.42%, 5.23% and 4.95%, and the FP-DETR has signif
icantly improved the detection efficiency and accuracy while consid
ering the number of parameters, showing excellent comprehensive 
performance.

In terms of storage size, FP-DETR requires 16.9 MB, which is slightly 
larger than YOLOv12 (15.8 MB) and comparable to YOLOv9 (17.2 MB), 
while being much smaller than Faster R-CNN (100.2 MB). This compact 
model size, combined with high accuracy and speed, makes FP-DETR 
suitable for deployment on edge devices with limited hardware 
resources.

Compared with the recently proposed YOLOv12 model, FP-DETR 
demonstrates superior performance in both accuracy and efficiency. 
Specifically, FP-DETR achieves a higher precision (+5.22%) and recall, 
while delivering a significantly faster frame rate (+38 FPS). Although 
the number of parameters is slightly higher (+1.2%), the lightweight 
dual-backbone design and the integration of frequency–spatial domain 
fusion allow the model to better suppress environmental noise and 
enhance feature extraction. This balance of accuracy, speed, and 
parameter efficiency highlights the advantages of FP-DETR in real-time 
pig body temperature detection, making it more suitable for practical 
deployment under large-scale farm conditions.

Table 3 presents the P-value calculations for FP-DETR compared to 
the baseline models. These P-values help further validate the superiority 
of FP-DETR over the baseline models in terms of precision, recall, and 
FPS. In all comparisons, the P-values for precision, recall, and FPS are 
consistently below the 0.05 threshold, indicating that the observed im
provements are not due to random variation but are statistically robust 
and reliable.

For instance, FP-DETR achieved markedly higher precision than 
YOLOv9, YOLOv12, and RT-DETR, with P-values of 5.92 × 10− 7, 8.35 ×
10− 7, and 3.10 × 10− 6, respectively. Similarly, recall improvements 
over YOLOv8 and YOLOv12 yielded P-values of 2.55 × 10− 6 and 9.87 ×
10− 6, while FPS comparisons demonstrated significant advantages even 
against RT-DETR (P = 9.55 × 10− 4). These results indicate that FP- 
DETR’s enhancements in accuracy, recall, and processing speed are 
statistically significant and reproducible, thereby reinforcing the reli
ability and scientific rigor of the proposed model.

Therefore, the FP-DETR model can achieve good detection accuracy 
and is a lightweight model, it has possibility to be deployed on edge 
devices with limited hardware performance.

4.3. Comparisons to the existing detection methods

There are some previous studies on the automatic detection for the 
RoI on pig body surface, the comparison results are shown in Table 4. 
For example, Guo, et al. (2023) developed a deep learning framework 
for individual pig detection and tracking, achieving a detection accuracy 
of 94.72%, 7.5 × 106 parameters and a speed of 12 FPS. In our research 
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group, Xie, et al. (2023) developed an infrared thermal imaging detec
tion method based on YOLOv5s-BiFPN with detection accuracy of 
96.88%, the frame rate of 100 FPS, and the number of parameters of 5.3 
× 106. Zhang, et al. (2024) proposed a temperature extraction algorithm 
based on registered images, although with less parameters of 3.59 × 106, 
the precision of 93.5% is relatively low.

The accuracy of FP-DETR is 98.9% (+4.18% compared to Guo, 
+2.02% compared to Xie, +5.4% compared to Zhang), although the FPS 
(68) is lower than that of YOLOv5s-BiFPN (100), it is over the 60-frame 
limit of the edge device, and 6.8 times faster than that of YOLOv7-tiny- 
Ghost (10FPS). The number of parameters (5.9 M) is only slightly higher 
than that of YOLOv5s (5.3 M) and much lower than that of CNN (7.5 M), 
which achieves the best balance of accuracy-speed-lightweight.

4.4. Automatic temperature extraction and verification

To assess the accuracy of FP-DETR in extracting surface temperatures 
from key body regions of pigs, the automatically extracted values were 
compared with manually measured ones (Fig. 15). The results show a 
strong correlation, with an R2 of 0.957, while the MAE and RMSE were 
0.108 and 0.142, respectively. These metrics indicate that FP-DETR 
provides highly consistent temperature estimates, closely matching 
manual measurements and ensuring reliable application in practical 
settings.

Table 2 
Comparison with different models.

Model Precision (%) Recall (%) Size (MB) Parameters/106 TrainTime (h) FPS (frame/s)

Faster R-CNN 89.44 ± 0.49 87.60 ± 0.58 99.30 ± 0.29 72.06 ± 0.06 9.84 ± 0.30 17 ± 5
YOLOv8 94.78 ± 0.40 93.15 ± 0.57 16.43 ± 0.27 6.38 ± 0.04 10.14 ± 0.21 33 ± 4
YOLOv9 92.65 ± 0.52 91.95 ± 0.39 17.20 ± 0.39 5.29 ± 0.03 11.66 ± 0.21 27 ± 2
YOLOv12 93.84 ± 0.53 92.62 ± 0.38 15.87 ± 0.20 5.85 ± 0.06 9.23 ± 0.36 29 ± 6
RT-DETR 94.12 ± 0.53 93.68 ± 0.61 15.20 ± 0.34 4.23 ± 0.05 10.29 ± 0.19 41 ± 6
This study 99.07 ± 0.50 96.75 ± 0.48 16.79 ± 0.21 5.91 ± 0.07 8.79 ± 0.28 67 ± 10

Table 3 
P-value calculations of FP-DETR compared with baseline models.

Model (FP-DETR) P value

Precision Recall FPS

Faster R-CNN 1.60 × 10− 1⁰ 3.42 × 10− 9 4.91 × 10− 6

YOLOv8 2.48 × 10− 8 2.55 × 10− 6 2.86 × 10− 4

YOLOv9 5.92 × 10− 7 1.13 × 10− 5 7.44 × 10− 4

YOLOv12 8.35 × 10− 7 9.87 × 10− 6 1.21 × 10− 3

RT-DETR 3.10 × 10− 6 6.42 × 10− 5 9.55 × 10− 4

Table 4 
Comparison with existing methods.

Literatures Specific 
algorithms

Precision 
(%)

FPS 
(frame/s)

Parameters 
(106)

(Guo, et al., 
2023)

CNN 94.72 12 7.5 × 106

(Xie, et al., 
2023)

YOLOv5s-BiFPN 
model

96.88 100 5.3 × 106

(Zhang, et al., 
2024)

YOLOv7-tiny- 
Ghost

93.5 10 3.59 × 106

This study FP-DETR 98.9 68 5.9 × 106

Fig. 15. Fitting effect of model and manual extraction temperature.
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Fig. 15 illustrates the differences between manually extracted and 
model-extracted temperatures across various ranges. On the plot, the 
horizontal axis represents manual extraction values, while the vertical 
axis shows the difference between automatic and manual extraction 
(Auto Extract – Manual Extract). The mean difference is close to zero, 
indicating strong consistency between the two methods and validating 
FP-DETR’s overall accuracy. Within the 38.0–38.6◦C range—the normal 
temperature interval for pigs—data points are densely clustered and 
align closely with the zero line. This pattern demonstrates that model- 
based extraction matches manual measurements particularly well in 
this physiological range, confirming FP-DETR’s high precision and 
strong applicability under typical farm conditions.

What’s more, the statistical analysis reveals that the automatic 
extraction algorithm we proposed shows a very small difference 
compared to manual extraction. The mean difference between the two 
methods is only 0.0009, indicating that the temperatures extracted by 
both methods are nearly identical. The 95% confidence interval for the 
difference is between − 0.0414 and 0.0431, suggesting that the true 
difference is negligible and close to zero.

Furthermore, the p-value from the paired t-test is 0.9683, which is 
significantly greater than the 0.05 threshold, indicating that there is no 
statistically significant difference between the two methods. This im
plies that the observed differences are likely due to random variation 
rather than a systematic bias.

4.5. Ablation experiments

4.5.1. Model ablation experiment
As shown in Table 5, compared with the baseline, the Dual-Backbone 

combined model improves precision and F1 score by 0.91% and 1.05%, 
respectively, although mAP@50 decreases by 0.82%. Multi-scale and 
multi-level extraction offered by the dual-backbone design enriches 
feature representation, supporting more accurate recognition and 
consistent classification. At the same time, however, the interaction 
between features from both backbones may disrupt certain high-recall 
characteristics, thereby reducing average accuracy at the 50% IoU 
threshold. The RT-DETR with the RFDAP module yields improvements 
of 1.14% in precision, 1.09% in F1 score, and 0.28% in mAP@50. These 
gains result from the RFDAP module’s ability to strengthen attention 
mechanisms, increase feature sensitivity, and optimize feature quality, 
allowing more efficient recognition and classification across varied 
scenarios.

When Dual-Backbone and RFDAP modules are combined, FP-DETR 
achieves even greater improvements, with increases of 2.32%, 1.22%, 
and 0.39% in precision, F1 score, and mAP@50, respectively. The dual 
backbone provides a framework for multi-scale feature learning, while 
the RFDAP module enhances fine-grained details. Together, they com
plement each other, enriching feature expression and significantly 
boosting FP-DETR’s ability to recognize and classify targets under 
diverse conditions.

4.5.2. Dual backbone ablation experiment
As shown in Table 6, compared with FasterNet, the serial version of 

Vision Mamba achieves 2.9% higher precision and 2.61% higher F1 
score, with only 1.5 × 106 additional parameters. It also demonstrates 
clear advantages over ConvNeXtV2, delivering 3.78% higher precision 
and 3.92% higher mAP@50 with fewer parameters, as well as over 

EfficientViT (+5.5% precision and + 5.57% F1 score) and Swin Trans
former (+3.6% precision with 11.72 × 106 fewer parameters).

In parallel deployment, Vision Mamba achieves 98.9% precision, 
97.88% F1 score, and 96.92% mAP@50. Compared with its serial 
version, precision decreases slightly by 0.1%, but F1 score improves by 
0.48%, while parameters are reduced by 9.92 × 106, leaving only 37.3% 
of the serial version. This balance highlights the parallel version’s suit
ability for lightweight and high-precision requirements in real-time edge 
device detection.

4.6. Onsite experiment validation for the lightweight model of pig body 
temperature detection

To evaluate the practical efficiency of FP-DETR in real-world appli
cations, we deployed it on an inspection robot within the pig house. The 
robot integrates a visible–infrared dual-mode camera, a lifting mecha
nism, a 360◦ rotating pan-tilt unit, a touchscreen interface, and an 
automated obstacle-avoidance mobile chassis. Its overall structure is 
illustrated in Fig. 16.

To compare the performance of the robot system, a handheld thermal 
imaging camera (Fotric Model 287-L20, Fotric, Texas, USA; temperature 
range: 40◦C–150◦C, accuracy: ±2◦C) was used for visual data collection. 
The measurements were taken under the same conditions as the in
spection robot, including position, height (1.5 m), angle (30◦), distance 
(1 m), and emissivity (0.98), to ensure the results were directly com
parable, the selection of components and the corresponding technical 
specifications for each part of the inspection robot are presented in 
Table 7.

The experimental validation was conducted on May 30, 2025, at 
Hongsheng Building Science Research Institute, Harbin, China (Fig. 17).

The pig house is divided into four separate pens, each with a different 
number of pigs, totaling 17 pigs. The data collection period was from 
1:30 pm (after feeding) to 4:30 pm (before feeding).

The pig body temperature measurements obtained by the FP- 
DETR–deployed inspection robot were compared with manual mea
surements taken using an infrared thermal camera (Fotric Model 287- 
L20, Fotric, Texas, USA; temperature range: 40◦C–150◦C, accuracy: 
±2◦C). Processing times for 17 pigs were recorded using the system’s 
built-in clock. The automated method required 56.5 s per pig (0.94 min), 
whereas manual measurements took 98.8 s per pig (1.65 min), repre
senting a 42.9% reduction in time per animal. Extrapolated to a 100-pig 
farm, this improvement translates into a time saving of 70.5 min per full 
inspection cycle, reducing the total inspection duration from 2.75 h to 
1.57 h, while maintaining accuracy.

As shown in Fig. 18, the Bland–Altman analysis indicates that tem
perature differences are tightly clustered around the mean bias of 
0.16◦C, with 95% limits of agreement (LoA) ranging from –0.44◦C to 
0.76◦C (span: 1.20◦C), demonstrating an acceptable level of agreement 
in practice. The difference data points are distributed symmetrically on 
both sides of the mean line, without any evident trend of systematic 
deviation. Within these limits, approximately 93% of the data points 
(16/17) fall inside the interval, with only a single point slightly above 
the upper limit, further confirming the high reliability of the measure
ments. Notably, the distribution of differences shows no association with 
temperature magnitude, indicating that the agreement between the two 
methods remains consistent across the full measurement range.

In order to check the robustness of the FP-DETR model in real farm 
conditions, real-time deployment tests were carried out. The results 
show that the model keeps stable accuracy, with variations mostly 
within 2–5%, which means an absolute error of about 0.8–1.9◦C when 
compared with a reference body temperature of 38◦C. Such errors 
mainly appeared in extreme situations, such as heavy rain that raised 
humidity and lowered ambient temperature. For efficiency, the frame 
rate was between 50 and 60 FPS. Lower frame rates were seen mainly at 
device startup and after long continuous use (more than three hours). 
During normal operation, the system stayed stable at 55–60 FPS, which 

Table 5 
Key block ablation experiments.

RT-DETR Dual-Backbone RFDAP Precision (%) F1 Score mAP@50

√ ​ ​ 96.58 96.66 96.53
√ √ ​ 97.49 97.71 95.71
√ ​ √ 97.72 97.75 96.81
√ √ √ 98.9 97.88 96.92
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is suitable for reliable real-time monitoring.
In summary, the testing device shows high-precision temperature 

extraction capabilities with robust measurement agreement, indicating 
strong practical ability.

4.7. Current limitations and future development

Although FP-DETR shows excellent detection performance on the 
current dataset, several potential aspects for future research and 
improvement still exist. First, due to objective limitations, the pig breeds 
available in experimental farms are limited. Consequently, model vali
dation is primarily concentrated on data from a single breed, repre
senting an unavoidable limitation at this stage. Future access to broader 
farm and pig species resources would be helpful for further examining 
the model’s ability to generalize across different species and growth 
stages.

Moreover, although the model has achieved a good balance between 
accuracy and efficiency, its deployment on edge devices remains con
strained by hardware limitations. Future efforts should focus on further 
optimization through lightweight network design, model compression, 
and hardware-software co-optimization to ensure stable real-time 
operation in practical farming environments. In addition, exploring 
the integration of the model into microcontroller units (MCUs) to 
develop truly lightweight detection devices with low power consump
tion, low cost, and high portability could better meet the practical needs 
of on-site farming applications.

5. Conclusion

(1) FP-DETR showed higher performance than other models, 
achieving higher precision (99.07 ± 0.50%) than YOLOv9 (92.65 
± 0.52%), YOLOv8 (94.78 ± 0.40%) and Faster R-CNN (89.44 ±
0.49%). It ran at higher FPS (67 ± 10 FPS) than RT-DETR (41 ± 6 
FPS), while maintaining higher efficiency with smaller size 
(16.79 ± 0.21 MB) and faster training time (8.79 ± 0.28 h).

(2) The FP-DETR detection model meets the requirement of real-time 
temperature extraction. The detection frame rate is 68 FPS, which 
is higher than the general requirement for real-time detection 
(25 ~ 30 FPS).

(3) The temperature extracted by the FP-DETR model is highly 
consistent with the manual extraction results, which can effec
tively replace the manual measurement. The R2, MAE and RMSE 
of the extraction temperature were 0.957, 0.108 and 0.142, 
respectively.

(4) The FP-DETR system achieved 43% faster detection (17 pigs in 
16 min) while maintaining high accuracy (0.16◦C MAE), with 
93% of measurements falling within acceptable consistency 
limits.
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Table 6 
Different backbone replacement ablation experiments.

Model Parallel Serial Precision (%) F1Score (%) mAP@50(%) Parameters/106

FasterNet √ ​ 96 95.27 92.66 4.4
​ √ 96.6 94 93.28 10.8

ConvNeXtV2 √ ​ 95.12 92.81 93 5.7
​ √ 96.8 94.76 96.3 12.6

EfficientViT √ ​ 93.4 92.31 92.45 6.1
​ √ 92.2 93.11 92.86 11

Swin Transformer √ ​ 95.3 94.16 94.21 17.62
​ √ 97.2 96.44 96.13 36.61

Vision Mamba (ours) √ ​ 98.9 97.88 96.92 5.9
​ √ 99 97.4 97.72 15.82

Fig. 16. The appearance of the inspection robot.

Table 7 
Hardware parameters of the experimental platform.

Component Version Manufacturer Parameter

3D Lidar VLP-16 Velodyne, San 
Jose, CA, USA

16-line,100 m detection 
range;300,000 points per 
second

2D Lidar MS200 ORADAR, 
Shenzhen, China

Single line; 12 m measurement 
range;4500 points per second

Dual-mode 
camera

UD36833B Hikvision, 
Hangzhou, China

256 x 128; 28 FPS

Depth 
Camera

Astras Orbbec, 
Shenzhen, China

640 x 480: 30 FPS

IMU CMP10A Yahboom, 
Shenzhen, China

Output frequency:0.2–200 Hz; 
10 axis

Processor Jetson- 
Nano

NVIDIA, Santa 
Clara,CA,USA

4 Core A57: 472 GFLOPs

Motion 
chassis

TR500 HelloMaker, 
Shenzhen, China

Crawler-type;0–1.2 m/s 
running speed
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Cuthbertson, H., Tarr, G., González, L.A., 2019. Methodology for data processing and 
analysis techniques of infrared video thermography used to measure cattle 
temperature in real time. Comput. Electron. Agric. 167, 105019. https://doi.org/ 
10.1016/j.compag.2019.105019.

Galina, M., Safitri, C., Bukhori, I., Silitonga, A., Suhartomo, A., 2022. An an 
implementation of smart agriculture for optimizing growth using Sonic Bloom and 
IoT integrated. J. Infotel 14, 65–74. https://doi.org/10.20895/infotel.v14i1.725.

Guo, Q., Sun, Y., Orsini, C., Bolhuis, J.E., de Vlieg, J., Bijma, P., de With, P.H., 2023. 
Enhanced camera-based individual pig detection and tracking for smart pig farms. 
Comput. Electron. Agric. 211, 108009. https://doi.org/10.1016/j. 
compag.2023.108009.

Hossain, S., Chowdhury, M.P.H.B., 2024. AgroSense: an IoT-based manual crops 
selection farming. Int. J. Information and Commun. Technol. (IJoICT) 10, 53–61. 
https://doi.org/10.21108/ijoict.v10i1.918.

Jumi, J., 2024. Design and building of a breeding house for IoT-based goat farming. 
J. Infotel. https://doi.org/10.20895/infotel.v16i3.1223.

Listianingsih, W., Susanto, T., 2023. Toward smart environment and forest city success: 
embracing sustainable urban solutions. Indonesian J. Computing (Indo-JC) 8, 23–34. 
https://doi.org/10.34818/INDOJC.2023.8.2.727.

Lohse, L., Uttenthal, Å., Enøe, C., Nielsen, J., 2010. A study on the applicability of 
implantable microchip transponders for body temperature measurements in pigs. 
Acta Vet. Scand. 52, 1–9. https://doi.org/10.1186/1751-0147-52-29.

Lu, M., He, J., Chen, C., Okinda, C., Shen, M., Liu, L., Yao, W., Norton, T., Berckmans, D., 
2018. An automatic ear base temperature extraction method for top view piglet 
thermal image. Comput. Electronics in Agric. 155, 339–347. https://doi.org/ 
10.1016/j.compag.2018.10.030.

Lu, Z., Zhao, M., Luo, J., Wang, G., Wang, D., 2021. Automatic teat detection for rotary 
milking system based on deep learning algorithms. Comput. Electron. Agric. 189, 
106391. https://doi.org/10.1016/j.compag.2021.106391.

Marquez, H.P., Ambrose, D., Schaefer, A., Cook, N., Bench, C., 2019. Infrared 
thermography and behavioral biometrics associated with estrus indicators and 
ovulation in estrus-synchronized dairy cows housed in tiestalls. J. Dairy Sci. 102, 
4427–4440. https://doi.org/10.3168/jds.2018-15221.
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